TY - JOUR A1 - Bell, Elanor M. T1 - Seasonal changes in the concentration and metabolic activity of bacteria and viruses at an Antarctic coastal site N2 - Bacteria play a key role in the world's oceans, supporting nutrient remineralisation and mediating carbon transfer. Little is known about annual changes in bacterial concentration, production and metabolism during the extreme seasonal changes in biological productivity in Antarctic waters. We measured rates of bacterial production, concentrations of viruses and bacteria and environmental parameters between February 2004 and January 2005 at an Antarctic coastal site. Concentrations of total bacteria and viruses were obtained using 4', 6-diamidino-2- phenylindole (DAPI) and SYBR Green I (Molecular Probes), respectively. Populations of bacteria in different metabolic states were estimated using vital stains. Concentrations of bacteria with intact or compromised plasma membranes were estimated using BacLight (Molecular Probes) and active cells estimated using 6-carboxyfluorescein diacetate (6CFDA). Our study showed 6CFDA and BacLight gave rapid and ecologically valuable insights into bacterial physiology, production and growth in natural Antarctic communities that were poorly represented by changes in total cell concentrations. Concentrations of total, active and intact bacteria declined rapidly at the end of summer probably owing to viral infection and microheterotrophic grazing. The decline continued over winter, likely owing to substrate limitation, and concentrations only increased after the phytoplankton bloom in spring and summer. Bacterial abundance was positively correlated with particulate organic carbon (POC) and nitrogen (PON), but not dissolved organic carbon (DOC), reflecting the refractory nature of the DOC pool. Only active and intact bacteria were significantly correlated with concentrations of chl a and rates of bacterial production. Furthermore, the obtained rates of [H-3]thymidine uptake suggest that bacterial growth rates can be sustained by the populations identified as intact or by active cells alone. Y1 - 2007 UR - http://www.int-res.com/abstracts/ame/v47/n1/ ER - TY - JOUR A1 - Bell, Elanor M. A1 - Weithoff, Guntram A1 - Gaedke, Ursula T1 - Temporal dynamics and growth of Actinophrys sol (Sarcodina: Heliozoa), the top predator in an extremely acidic lake N2 - 1. The in situ abundance, biomass and mean cell volume of Actinophrys sol (Sarcodina: Heliozoa), the top predator in an extremely acidic German mining lake (Lake 111; pH 2.65), were determined over three consecutive years (spring to autumn, 2001-03). 2. Actinophrys sol exhibited pronounced temporal and vertical patterns in abundance, biomass and mean cell volume. Increasing from very low spring densities, maxima in abundance and biomass were observed in late June/early July and September. The highest mean abundance recorded during the study was 7 x 10(3) Heliozoa L-1. Heliozoan abundance and biomass were higher in the epilimnion than in the hypolimnion. Actinophrys sol cells from this acidic lake were smaller than individuals of the same species found in other aquatic systems. 3. We determined the growth rate of A. sol using all potential prey items available in, and isolated and cultured from, Lake 111. Prey items included: single-celled and filamentous bacteria of unknown taxonomic affinity, the mixotrophic flagellates Chlamydomonas acidophila and Ochromonas sp., the ciliate Oxytricha sp. and the rotifers Elosa worallii and Cephalodella hoodi. Actinophrys sol fed over a wide-size spectrum from bacteria to metazoans. Positive growth was not supported by all naturally available prey. Actinophrys sol neither increased in cell number (k) nor biomass (k(b)) when starved, with low concentrations of single-celled bacteria or with the alga Ochromonas sp. Positive growth was achieved with single- celled bacteria (k = 0.22 +/- 0.02 d(-1); k(b) = -0.06 +/- 0.02 d(-1)) and filamentous bacteria (k = 0.52 +/- < 0.01 d(- 1); k(b) = 0.66 d(-1)) at concentrations greater than observed in situ, and the alga C. acidophila (up to k = 0.43 +/- 0.03 d(-1); k(b) = 0.44 +/- 0.04 d(-1)), the ciliate Oxytricha sp. (k = 0.34 +/- 0.01 d(-1)) and in mixed cultures containing rotifers and C. acidophila (k = 0.23 +/- 0.02-0.32 +/- 0.02 d(-1); maximum k(b) = 0.42 +/- 0.05 d(-1)). The individual- and biomass-based growth of A. sol was highest when filamentous bacteria were provided. 4. Existing quantitative carbon flux models for the Lake 111 food web can be updated in light of our results. Actinophrys sol are omnivorous predators supported by a mixed diet of filamentous bacteria and C. acidophila in the epilimnion. Heliozoa are important components in the planktonic food webs of 'extreme' environments Y1 - 2006 UR - http://www3.interscience.wiley.com/cgi-bin/issn?DESCRIPTOR=PRINTISSN&VALUE=0046-5070 U6 - https://doi.org/10.1111/j.1365-2427.2006.01561.x SN - 0046-5070 ER - TY - JOUR A1 - Bell, Elanor M. A1 - Laybourn-Parry, J. T1 - Annual plankton dynamics in an Antarctic saline lake N2 - 1. The plankton dynamics of Ace Lake, a saline, meromictic basin in the Vestfold Hills, eastern Antarctica was studied between December 1995 and February 1997. 2. The lake supported two distinct plankton communities; an aerobic microbial community in the upper oxygenated mixolimnion and an anaerobic microbial community in the lower anoxic monimolimnion. 3. Phytoplankton development was limited by nitrogen availability. Soluble reactive phosphorus was never limiting. Chlorophyll a concentrations in the mixolimnion ranged between 0.3 and 4.4 mu g L-1 during the study period and a deep chlorophyll maximum persisted throughout the year below the chemo/oxycline. 4. Bacterioplankton abundance showed considerable seasonal variation related to light and substrate availability. Autotrophic bacterial abundance ranged between 0.02 and 8.94 x 10(8) L-1 and heterotrophic bacterial abundance between 1.26 and 72.8 x 10(8) L-1 throughout the water column. 5. The mixolimnion phytoplankton was dominated by phytoflagellates, in particular Pyramimonas gelidicola. P. gelidicola remained active for most of the year by virtue of its mixotrophic behaviour. Photosynthetic dinoflagellates occurred during the austral summer, but the entire population encysted for the winter. 6. Two communities of heterotrophic flagellates were apparent; a community living in the upper monimolimnion and a community living in the aerobic mixolimnion. Both exhibited different seasonal dynamics. 7. The ciliate community was dominated by the autotroph Mesodinium rubrum. The abundance of M. rubrum peaked in summer. A proportion of the population encysted during winter. Only one other ciliate, Euplotes sp., occurred regularly. 8. Two species of Metazoa occurred in the mixolimnion; a calanoid copepod (Paralabidocera antarctica) and a rotifer (Notholca sp.). However, there was no evidence of grazing pressure on the microbial community. In common with most other Antarctic lakes, Ace Lake appears to be driven by 'bottom-up' forces. Y1 - 1999 ER - TY - JOUR A1 - Bell, Elanor M. A1 - Laybourn-Parry, J. T1 - The plankton community of a young, eutrophic, Antarctic saline lake N2 - A shallow, saline lake (Rookery Lake) close to the sea and surrounded by a penguin rookery was investigated during the austral spring and summer of 1996/1997. The proximity to the sea means that the lake is likely to have been formed recently during isostatic uplift. Inputs of carbon and nutrients from the penguin rookery have rendered Rookery Lake eutrophic compared with other brackish and saline lakes in the Vestfold Hills. Chlorophyll a concentration, bacterioplankton, heterotrophic nanoflagellate and phototrophic nanoflagellate abundances were all significantly higher than in other non-enriched lakes. The high productivity created seasonal anoxia during winter and spring below ice cover. The ciliate community resembled the marine community, and was dissimilar to that seen in older saline lakes within the Vestfold Hills. Thus Rockery Lake provides valuable evidence of the impact of natural eutrophication on an Antarctic lake, as well as of the evolution of the typical microbial community which dominates the older lakes of the Vestfold Hills. Y1 - 1999 ER - TY - JOUR A1 - Laybourn-Parry, J. A1 - Roberts, E. C. A1 - Bell, Elanor M. T1 - Mixotrophy as a survival strategy in Antarctic lakes N2 - Mixotrophy is a widespread phenomenon among planktonic protists. It involves the combination of autotrophy and heterotrophy in varying degrees. Many phytoflagellate species ingest bacteria as a means of obtaining nutrients for photosynthesis or for supplementing their carbon budget under light limitation. Ciliates either sequester the plastids of their algal prey or harbour endosymbiotic algae. In the saline lakes of the Vestfold Hills and in Lakes Hoare and Fryxell in the McMurdo Dry Valleys the dominant phytoflagellates ingest bacteria, and there is evidence to suggest that during the winter months they lack chlorophyll and may become entirely heterotrophic. In Lake Fryxell phagotrophic pyhtoflagellates (cryptophytes) made a significant impact on bacterial production, removing up to 13% of the bacterial biomass day-1. These cryptophytes suffered predation from Plagiocampa (a ciliate), which appears to harbour them for a significant period before digesting them. We suspect that this may be equivalent to an intermediate stage in the evolution of mixotrophy. A significant number of the planktonic ciliates in Antarctic lakes were mixotrophic. The final evolutionary end point is the situation seen in Mesodinium rubrum, which now relies entirely on its cryptophycean endosymbiont and no longer ingests food. Mesodinium is the dominant ciliate in many of the saline lakes of the Vestfold Hills, which are of marine origin. It can reach abundances in excess of 60,000l-1 in Ace Lake, This ciliate is a ubiquitous member of the marine plankton worldwide and has successfully adapted to the lacustrine environment in Antarctica. The evidence suggests that among the survival strategies seen in Antarctic lake plankton, mixotrophy plays and important role among a number of the dominant protozoan species. Y1 - 2000 ER - TY - JOUR A1 - Laybourn-Parry, J. A1 - Bell, Elanor M. A1 - Roberts, E. C. T1 - Growth of Protozoa in Antarctic lakes N2 - The growth rates of heterotrophic nanoflagellates (HNAN), mixotrophic cryptophytes, dinoflagellates and ciliates in field assemblages from Ace Lake in the Vestfold Hills (eastern Antarctica) and Lakes Fryxell and Hoare (McMurdo Dry Valleys, western Antarctica), were determined during the austral summers of 1996/1997 and 1997/1998. The response of the nanoflagellates to temperature differed between lakes in eastern and western Antarctica. In Ace Lake the available bacterial food resources had little impact on growth rate, while temperature imposed an impact, whereas in Lake Hoare increased bacterial food resources elicited an increase in growth rate. However, the incorporation of published data from across Antarctica showed that temperature had the greater effect, but that growth is probably controlled by a suite of factors not solely related to bacterial food resources and temperature. Dinoflagellates had relatively high specific growth rates (0.0057-0.384 h(-1)), which were comparable to Antarctic lake ciliates and to dinoflagellates from warmer, lower latitude locations. Temperature did not appear to impose any significant impact on growth rates. Mixotrophic cryptophytes in Lake Hoare had lower specific growth rates than HNAN (0.0029-0.0059 h(-1) and 0.0056-0.0127 h(-1), respectively). They showed a marked seasonal variation in growth rate, which was probably related to photosynthetically active radiation under the ice at different depths in the water column. Ciliates' growth rates showed no relationship between food supply and mean cell volume, but did show a response to temperature. Specific growth rates ranged between 0.0033 and 0.150 h(-1) for heterotrophic ciliates, 0.0143 h(-1) for a mixotrophic Plagiocampa species and 0.0075 h(-1) for the entirely autotrophic ciliate, Mesodinium rubrum. The data indicated that the scope for growth among planktonic Protozoa living in oligotrophic, cold extreme lake ecosystems is limited. These organisms are likely to suffer prolonged physiological stress, which may account for the highly variable growth rates seen within and between Antarctic lakes. Y1 - 2000 ER - TY - JOUR A1 - Bell, Elanor M. A1 - Vincent, Amanda C. J. T1 - Art.: Gasterosteiform Y1 - 2002 ER - TY - JOUR A1 - Tittel, Jörg A1 - Bissinger, Vera A1 - Zippel, Barbara A1 - Gaedke, Ursula A1 - Bell, Elanor M. A1 - Lorke, Andreas A1 - Kamjunke, Norbert T1 - Mixotrophs combine resource use to outcompete specialists: Implications for aquatic food webs N2 - The majority of species can be grouped into those relying solely on photosynthesis (phototrophy) or those relying solely on the assimilation of organic substances (heterotrophy) to meet their requirements for energy and carbon. However, a special life history trait exists in which organisms combine both phototrophy and heterotrophy. Such 'mixotrophy' is a widespread phenomenon in aquatic habitats and is observed in many protozoan and metazoan organisms. The strategy requires investment in both photosynthetic and heterotrophic cellular apparatus, but the benefits must outweigh these costs. In accordance with the mechanistic resource competition theory, laboratory experiments revealed that pigmented mixotrophs combined light and prey as substitutable resources. Thereby, they reduced prey abundance below the critical food concentration of competing specialist grazers [Rothhaupt, K. O. (1996) Ecology 77, 716-724]. Here, we demonstrate for the first time the important consequences of this strategy for an aquatic community. In the illuminated surface strata of a lake, mixotrophs reduced prey abundance so steeply that grazers from higher trophic levels, consuming both the mixotrophs and their prey, could not persist. Thus, the mixotrophs escaped from both competition and grazing, and remained dominant. Furthermore, the mixotrophs structured the prey abundance along the vertical light gradient creating low densities near the surface and a pronounced maximum of their algal prey at depth. Such deep algal accumulations are typical features of nutrient poor aquatic habitats, previously explained by resource availability. We hypothesize instead that the mixotrophic grazing strategy is responsible for deep algal accumulations in many aquatic environments. Y1 - 2003 UR - www.pnas.org/cgi/doi/10.1073/pnas.2130696100 ER - TY - JOUR A1 - Bell, Elanor M. A1 - Lockyear, Jacqueline F. A1 - McPherson, Jana M. A1 - Marsden, A. Dale A1 - Vincent, Amanda C. J. T1 - First field studies of an Endangered South African seahorse, hippocampus capensis N2 - South Africa's endemic Knysna seahorse, Hippocampus capensis Boulenger 1900, is a rare example of a marine fish listed as Endangered by the IUCN because of its limited range and habitat vulnerability. It is restricted to four estuaries on the southern coast of South Africa. This study reports on its biology in the Knysna and Swartvlei estuaries, both of which are experiencing heavy coastal development. We found that H. capensis was distributed heterogeneously throughout the Knysna Estuary, with a mean density of 0.0089 m-2 and an estimated total population of 89 000 seahorses (95% confidence interval: 30 000 to 148 000). H. capensis was found most frequently in low density vegetation stands ( 20% cover) and grasping Zostera capensis. Seahorse density was not otherwise correlated with habitat type or depth. The size of the area in which any particular seahorse was resighted did not differ between males and females. Adult sex ratios were skewed in most transects, with more males than females, but were even on a 10 m by 10 m focal study grid. Only three juveniles were sighted during the study. Both sexes were reproductively active but no greeting or courtship behaviours were observed. Males on the focal study grid were longer than females, and had shorter heads and longer tails, but were similar in colouration and skin filamentation. The level of threat to H. capensis and our limited knowledge of its biology mean that further scientific study is urgently needed to assist in developing sound management practices. Y1 - 2003 ER - TY - JOUR A1 - Bell, Elanor M. A1 - Weithoff, Guntram T1 - Benthic recruitment of zooplankton in an acidic lake N2 - In recent years most studies of the benthic microbial food web have either been descriptive or were restricted to the measurement of within sediment process rates. Little is known about benthic-pelagic coupling processes such as recruitment. We, therefore, developed an ex situ core incubation procedure to quantify the potential for microbial recruitment from the benthos to the pelagic in an acidic mining lake, Mining Lake 111 (ML 111; pH 2.6), in eastern Germany. Our data suggest that considerable zooplankton recruitment from the benthos takes place. Heliozoan and rhizopod recruitment in both summer and winter sediment cores was highest when they were incubated at 20°C. Maximum heliozoan recruitment was 23 (± 9 s.e.) individuals cm-2 d-1 (40% initial standing stock daily) in the winter 20°C incubation. Maximum rhizopod recruitment was 6 (± 2 s.e.) individuals cm-2 d-1 in the summer 20°C incubation. Little or no recruitment was apparent for either taxa when winter cores were incubated at 5°C, implying a temperature cue. Conversely, the rotifer, Cephalodella hoodi, exhibited a maximum recruitment of 6 (± 2 s.e.) individuals cm-2 d-1 during the winter 5°C incubation, representing 30% of initial standing stock daily, but little recruitment when incubated at 20°C. Cephalodella may have responded to an increased winter benthic food supply; in situ winter Chl a concentrations in the benthos were 3.4 times higher than those in the summer. The importance of this was reinforced by the poor pelagic food supply available in ML 111. In situ, Heliozoa, rhizopods and Cephalodella were first observed in the epilimnion of ML 111 in spring or early summer, suggesting active or passive recruitment following lateral transport from littoral sediments. Benthic-pelagic coupling via recruitment is potentially important in understanding the pelagic food web in ML 111 and warrants further investigation in this and other aquatic environments. Y1 - 2003 ER -