TY - JOUR A1 - Baroni, Gabriele A1 - Scheiffele, Lena M. A1 - Schrön, Martin A1 - Ingwersen, Joachim A1 - Oswald, Sascha T1 - Uncertainty, sensitivity and improvements in soil moisture estimation with cosmic-ray neutron sensing JF - Journal of hydrology N2 - Cosmic-ray neutron sensing (CRNS) is a promising proximal soil sensing technique to estimate soil moisture at intermediate scale and high temporal resolution. However, the signal shows complex and non-unique response to all hydrogen pools near the land surface, providing some challenges for soil moisture estimation in practical applications. Aims of the study were 1) to assess the uncertainty of CRNS as a stand-alone approach to estimate volumetric soil moisture in cropped field 2) to identify the causes of this uncertainty 3) and possible improvements. Two experimental sites in Germany were equipped with a CRNS probe and point-scale soil moisture network. Additional monitoring activities were conducted during the crop growing season to characterize the soil-plant systems. This data is used to identify and quantify the different sources of uncertainty (factors). An uncertainty analysis, based on Monte Carlo approach, is applied to propagate these uncertainties to CRNS soil moisture estimations. In addition, a sensitivity analysis based on the Sobol’ method is performed to identify the most important factors explaining this uncertainty. Results show that CRNS soil moisture compares well to the soil moisture network when these point-scale values are weighted to account for the spatial sensitivity of the signal and other sources of hydrogen (lattice water and organic carbon) are added to the water content. However, the performance decreases when CRNS is considered as a stand-alone method to retrieve the actual (non-weighted) volumetric soil moisture. The support volume (penetration depth and radius) shows also a considerable uncertainty, especially in relatively dry soil moisture conditions. Four of the seven factors analyzed (the vertical soil moisture profile, bulk density, incoming neutron correction and the calibrated parameter N0) were found to play an important role. Among the possible improvements identified, a simple correction factor based on vertical point-scale soil moisture profiles shows to be a promising approach to account for the sensitivity of the CRNS signal to the upper soil layers. KW - Soil moisture KW - Cosmic-ray neutrons KW - Uncertainty analysis KW - Sensitivity analysis Y1 - 2018 U6 - https://doi.org/10.1016/j.jhydrol.2018.07.053 SN - 0022-1694 SN - 1879-2707 VL - 564 SP - 873 EP - 887 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Baroni, Gabriele A1 - Oswald, Sascha T1 - A scaling approach for the assessment of biomass changes and rainfall interception using cosmic-ray neutron sensing JF - Journal of hydrology N2 - Cosmic-Ray neutron sensing (CRS) is a unique approach to measure soil moisture at field scale filling the gap of current methodologies. However, CRS signal is affected by all the hydrogen pools on the land surface and understanding their relative importance plays an important role for the application of the method e.g., validation of remote sensing products and data assimilation. In this study, a soil moisture scaling approach is proposed to estimate directly the correct CRS soil moisture based on the soil moisture profile measured at least in one position within the field. The approach has the advantage to avoid the need to introduce one correction for each hydrogen contribution and to estimate indirectly all the related time-varying hydrogen pools. Based on the data collected in three crop seasons, the scaling approach shows its ability to identify and to quantify the seasonal biomass water equivalent. Additionally, the analysis conducted at sub-daily time resolution is able to quantify the daily vertical redistribution of the water biomass and the rainfall interception, showing promising applications of the CRS method also for these types of measurements. Overall, the study underlines how not only soil moisture but all the specific hydrological processes in the soil-plant-atmosphere continuum should be considered for a proper evaluation of the CRS signal. For this scope, the scaling approach reveals to be a simple and pragmatic analysis that can be easily extended to other experimental sites. (C) 2015 Elsevier B.V. All rights reserved. KW - Cosmic-ray KW - Soil moisture KW - Scaling KW - Interception KW - Biomass water KW - Agricultural field Y1 - 2015 U6 - https://doi.org/10.1016/j.jhydrol.2015.03.053 SN - 0022-1694 SN - 1879-2707 VL - 525 SP - 264 EP - 276 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Baroni, Gabriele A1 - Ortuani, B. A1 - Facchi, A. A1 - Gandolfi, C. T1 - The role of vegetation and soil properties on the spatio-temporal variability of the surface soil moisture in a maize-cropped field JF - Journal of hydrology N2 - Soil moisture dynamics are affected by complex interactions among several factors. Understanding the relative importance of these factors is still an important challenge in the study of water fluxes and solute transport in unsaturated media. In this study, the spatio-temporal variability of surface soil moisture was investigated in a 10 ha flat cropped field located in northern Italy. Soil moisture was measured on a regular 50 x 50 m grid on seven dates during the growing season. For each measurement campaign, the spatial variability of the soil moisture was compared with the spatial variability of the soil texture and crop properties. In particular, to better understand the role of the vegetation, the spatio-temporal variability of two different parameters - leaf area index and crop height - was monitored on eight dates at different crop development stages. Statistical and geostatistical analysis was then applied to explore the interactions between these variables. In agreement with other studies, the results show that the soil moisture variability changes according to the average value within the field, with the standard deviation reaching a maximum value under intermediate mean soil moisture conditions and the coefficient of variation decreasing exponentially with increasing mean soil moisture. The controls of soil moisture variability change according to the average soil moisture within the field. Under wet conditions, the spatial distribution of the soil moisture reflects the variability of the soil texture. Under dry conditions, the spatial distribution of the soil moisture is affected mostly by the spatial variability of the vegetation. The interaction between these two factors is more important under intermediate soil moisture conditions. These results confirm the importance of considering the average soil moisture conditions within a field when investigating the controls affecting the spatial variability of soil moisture. This study highlights the importance of considering the spatio-temporal variability of the vegetation in investigating soil moisture dynamics, especially under intermediate and dry soil moisture conditions. The results of this study have important implications in different hydrological applications, such as for sampling design, ranking stability application, indirect measurements of soil properties and model parameterisation. KW - Soil moisture KW - Spatio-temporal variability KW - Controlling factors KW - Principal component analysis KW - Geostatistics KW - Agricultural field Y1 - 2013 U6 - https://doi.org/10.1016/j.jhydrol.2013.03.007 SN - 0022-1694 SN - 1879-2707 VL - 489 IS - 7 SP - 148 EP - 159 PB - Elsevier CY - Amsterdam ER -