TY - JOUR A1 - Mattern, Maximilian A1 - Pudell, Jan-Etienne A1 - Dumesnil, Karine A1 - von Reppert, Alexander A1 - Bargheer, Matias T1 - Towards shaping picosecond strain pulses via magnetostrictive transducers JF - Photoacoustics N2 - Using time-resolved x-ray diffraction, we demonstrate the manipulation of the picosecond strain response of a metallic heterostructure consisting of a dysprosium (Dy) transducer and a niobium (Nb) detection layer by an external magnetic field. We utilize the first-order ferromagnetic–antiferromagnetic phase transition of the Dy layer, which provides an additional large contractive stress upon laser excitation compared to its zerofield response. This enhances the laser-induced contraction of the transducer and changes the shape of the picosecond strain pulses driven in Dy and detected within the buried Nb layer. Based on our experiment with rare-earth metals we discuss required properties for functional transducers, which may allow for novel field-control of the emitted picosecond strain pulses. KW - picosecond ultrasonics KW - magnetostriction KW - ultrafast x-ray diffraction KW - ultrafast photoacoustics KW - nanoscale heat transfer KW - negative thermal expansion Y1 - 2023 U6 - https://doi.org/10.1016/j.pacs.2023.100463 SN - 2213-5979 VL - 30 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Deb, Marwan A1 - Popova, Elena A1 - Jaffrès, Henri-Yves A1 - Keller, Niels A1 - Bargheer, Matias T1 - Controlling high-frequency spin-wave dynamics using double-pulse laser excitation JF - Physical review applied N2 - Manipulating spin waves is highly required for the development of innovative data transport and processing technologies. Recently, the possibility of triggering high-frequency standing spin waves in magnetic insulators using femtosecond laser pulses was discovered, raising the question about how one can manipulate their dynamics. Here we explore this question by investigating the ultrafast magnetiza-tion and spin-wave dynamics induced by double-pulse laser excitation. We demonstrate a suppression or enhancement of the amplitudes of the standing spin waves by precisely tuning the time delay between the two pulses. The results can be understood as the constructive or destructive interference of the spin waves induced by the first and second laser pulses. Our findings open exciting perspectives towards generating single-mode standing spin waves that combine high frequency with large amplitude and low magnetic damping. Y1 - 2022 U6 - https://doi.org/10.1103/PhysRevApplied.18.044001 SN - 2331-7019 VL - 18 IS - 4 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Deb, Marwan A1 - Popova, Elena A1 - Jaffrès, Henri-Yves A1 - Keller, Niels A1 - Bargheer, Matias T1 - Polarization-dependent subpicosecond demagnetization in iron garnets JF - Physical review : B, covering condensed matter and materials physics N2 - Controlling the magnetization dynamics at the fastest speed is a major issue of fundamental condensed matter physics and its applications for data storage and processing technologies. It requires a deep understanding of the interactions between the degrees of freedom in solids, such as spin, electron, and lattice as well as their responses to external stimuli. In this paper, we systematically investigate the fluence dependence of ultrafast magnetization dynamics induced by below-bandgap ultrashort laser pulses in the ferrimagnetic insulators BixY3-xFe5O12 with 1 xBi 3. We demonstrate subpicosecond demagnetization dynamics in this material followed by a very slow remagnetization process. We prove that this demagnetization results from an ultrafast heating of iron garnets by two-photon absorption (TPA), suggesting a phonon-magnon thermalization time of 0.6 ps. We explain the slow remagnetization timescale by the low phonon heat conductivity in garnets. Additionally, we show that the amplitudes of the demagnetization, optical change, and lattice strain can be manipulated by changing the ellipticity of the pump pulses. We explain this phenomenon considering the TPA circular dichroism. These findings open exciting prospects for ultrafast manipulation of spin, charge, and lattice dynamics in magnetic insulators by ultrafast nonlinear optics. Y1 - 2022 U6 - https://doi.org/10.1103/PhysRevB.106.184416 SN - 2469-9950 SN - 2469-9969 VL - 106 IS - 18 PB - American Institute of Physics, American Physical Society CY - Woodbury, NY ER - TY - JOUR A1 - Zeuschner, Steffen Peer A1 - Wang, Xi-Guang A1 - Deb, Marwan A1 - Popova, Elena A1 - Malinowski, Gregory A1 - Hehn, Michel A1 - Keller, Niels A1 - Berakdar, Jamal A1 - Bargheer, Matias T1 - Standing spin wave excitation in Bi BT - YIG films via temperature-induced anisotropy changes and magneto-elastic coupling JF - Physical review : B, Condensed matter and materials physics N2 - Based on micromagnetic simulations and experimental observations of the magnetization and lattice dynamics after the direct optical excitation of the magnetic insulator Bi : YIG or indirect excitation via an optically opaque Pt/Cu double layer, we disentangle the dynamical effects of magnetic anisotropy and magneto-elastic coupling. The strain and temperature of the lattice are quantified via modeling ultrafast x-ray diffraction data. Measurements of the time-resolved magneto-optical Kerr effect agree well with the magnetization dynamics simulated according to the excitation via two mechanisms: the magneto-elastic coupling to the experimentally verified strain dynamics and the ultrafast temperature-induced transient change in the magnetic anisotropy. The numerical modeling proves that, for direct excitation, both mechanisms drive the fundamental mode with opposite phase. The relative ratio of standing spin wave amplitudes of higher-order modes indicates that both mechanisms are substantially active. Y1 - 2022 U6 - https://doi.org/10.1103/PhysRevB.106.134401 SN - 2469-9950 SN - 2469-9969 VL - 106 IS - 13 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Mattern, Maximilian A1 - von Reppert, Alexander A1 - Zeuschner, Steffen Peer A1 - Pudell, Jan-Etienne A1 - Kühne, F. A1 - Diesing, Detlef A1 - Herzog, Marc A1 - Bargheer, Matias T1 - Electronic energy transport in nanoscale Au/Fe hetero-structures in the perspective of ultrafast lattice dynamics JF - Applied physics letters N2 - We study the ultrafast electronic transport of energy in a photoexcited nanoscale Au/Fe hetero-structure by modeling the spatiotemporal profile of energy densities that drives transient strain, which we quantify by femtosecond x-ray diffraction. This flow of energy is relevant for intrinsic demagnetization and ultrafast spin transport. We measured lattice strain for different Fe layer thicknesses ranging from few atomic layers to several nanometers and modeled the spatiotemporal flow of energy densities. The combination of a high electron-phonon coupling coefficient and a large Sommerfeld constant in Fe is found to yield electronic transfer of nearly all energy from Au to Fe within the first hundreds of femtoseconds. Y1 - 2022 U6 - https://doi.org/10.1063/5.0080378 SN - 0003-6951 SN - 1077-3118 VL - 120 IS - 9 PB - AIP Publishing CY - Melville ER - TY - JOUR A1 - Herzog, Marc A1 - von Reppert, Alexander A1 - Pudell, Jan-Etienne A1 - Henkel, Carsten A1 - Kronseder, Matthias A1 - Back, Christian H. A1 - Maznev, Alexei A. A1 - Bargheer, Matias T1 - Phonon-dominated energy transport in purely metallic heterostructures JF - Advanced functional materials N2 - Ultrafast X-ray diffraction is used to quantify the transport of energy in laser-excited nanoscale gold-nickel (Au-Ni) bilayers. Electron transport and efficient electron-phonon coupling in Ni convert the laser-deposited energy in the conduction electrons within a few picoseconds into a strong non-equilibrium between hot Ni and cold Au phonons at the bilayer interface. Modeling of the subsequent equilibration dynamics within various two-temperature models confirms that for ultrathin Au films, the thermal transport is dominated by phonons instead of conduction electrons because of the weak electron-phonon coupling in Au. KW - heterostructures KW - nanoscale energy transports KW - non-equilibrium KW - thermal KW - transports KW - ultrafast phenomena Y1 - 2022 U6 - https://doi.org/10.1002/adfm.202206179 SN - 1616-301X SN - 1616-3028 VL - 32 IS - 41 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Shayduk, Roman A1 - Hallmann, Jörg A1 - Rodriguez-Fernandez, Angel A1 - Scholz, Markus A1 - Lu, Wei A1 - Bösenberg, Ulrike A1 - Möller, Johannes A1 - Zozulya, Alexey A1 - Jiang, Man A1 - Wegner, Ulrike A1 - Secareanu, Radu-Costin A1 - Palmer, Guido A1 - Emons, Moritz A1 - Lederer, Max A1 - Volkov, Sergey A1 - Lindfors-Vrejoiu, Ionela A1 - Schick, Daniel A1 - Herzog, Marc A1 - Bargheer, Matias A1 - Madsen, Anders T1 - Femtosecond x-ray diffraction study of multi-THz coherent phonons in SrTiO3 JF - Applied physics letters N2 - We report generation of ultra-broadband longitudinal acoustic coherent phonon wavepackets in SrTiO3 (STO) with frequency components extending throughout the first Brillouin zone. The wavepackets are efficiently generated in STO using femtosecond infrared laser excitation of an atomically flat 1.6 nm-thick epitaxial SrRuO3 film. We use femtosecond x-ray diffraction at the European X-Ray Free Electron Laser Facility to study the dispersion and damping of phonon wavepackets. The experimentally determined damping constants for multi-THz frequency phonons compare favorably to the extrapolation of a simple ultrasound damping model over several orders of magnitude. Y1 - 2022 U6 - https://doi.org/10.1063/5.0083256 SN - 0003-6951 SN - 1077-3118 VL - 120 IS - 20 PB - AIP Publishing CY - Melville ER - TY - JOUR A1 - Zeuschner, S. P. A1 - Mattern, M. A1 - Pudell, Jan-Etienne A1 - von Reppert, A. A1 - Rössle, M. A1 - Leitenberger, Wolfram A1 - Schwarzkopf, J. A1 - Boschker, J. E. A1 - Herzog, Marc A1 - Bargheer, Matias T1 - Reciprocal space slicing BT - a time-efficient approach to femtosecond x-ray diffraction JF - Structural Dynamics N2 - An experimental technique that allows faster assessment of out-of-plane strain dynamics of thin film heterostructures via x-ray diffraction is presented. In contrast to conventional high-speed reciprocal space-mapping setups, our approach reduces the measurement time drastically due to a fixed measurement geometry with a position-sensitive detector. This means that neither the incident (ω) nor the exit (2θ) diffraction angle is scanned during the strain assessment via x-ray diffraction. Shifts of diffraction peaks on the fixed x-ray area detector originate from an out-of-plane strain within the sample. Quantitative strain assessment requires the determination of a factor relating the observed shift to the change in the reciprocal lattice vector. The factor depends only on the widths of the peak along certain directions in reciprocal space, the diffraction angle of the studied reflection, and the resolution of the instrumental setup. We provide a full theoretical explanation and exemplify the concept with picosecond strain dynamics of a thin layer of NbO2. Y1 - 0202 U6 - https://doi.org/10.1063/4.0000040 SN - 2329-7778 VL - 8 PB - AIP Publishing LLC CY - Melville, NY ER - TY - JOUR A1 - Mattern, Maximilian A1 - Pudell, Jan-Etienne A1 - Laskin, Gennadii A1 - Reppert, Alexander von A1 - Bargheer, Matias T1 - Analysis of the temperature- and fluence-dependent magnetic stress in laser-excited SrRuO3 JF - Structural dynamics N2 - We use ultrafast x-ray diffraction to investigate the effect of expansive phononic and contractive magnetic stress driving the picosecond strain response of a metallic perovskite SrRuO3 thin film upon femtosecond laser excitation. We exemplify how the anisotropic bulk equilibrium thermal expansion can be used to predict the response of the thin film to ultrafast deposition of energy. It is key to consider that the laterally homogeneous laser excitation changes the strain response compared to the near-equilibrium thermal expansion because the balanced in-plane stresses suppress the Poisson stress on the picosecond timescale. We find a very large negative Grüneisen constant describing the large contractive stress imposed by a small amount of energy in the spin system. The temperature and fluence dependence of the strain response for a double-pulse excitation scheme demonstrates the saturation of the magnetic stress in the high-fluence regime. KW - Thin films KW - Thermodynamic properties KW - Bragg peak KW - Ultrafast X-ray diffraction KW - Thermal effects KW - Phonons KW - Magnetism KW - Lattice dynamics KW - Lasers KW - Perovskites Y1 - 2020 U6 - https://doi.org/10.1063/4.0000072 SN - 2329-7778 VL - 8 IS - 2 PB - AIP Publishing LLC CY - Melville, NY ER - TY - JOUR A1 - von Reppert, Alexander A1 - Mattern, Maximilian A1 - Pudell, Jan-Etienne A1 - Zeuschner, Steffen Peer A1 - Dumesnil, Karine A1 - Bargheer, Matias T1 - Unconventional picosecond strain pulses resulting from the saturation of magnetic stress within a photoexcited rare earth layer JF - Structural Dynamics N2 - Optical excitation of spin-ordered rare earth metals triggers a complex response of the crystal lattice since expansive stresses from electron and phonon excitations compete with a contractive stress induced by spin disorder. Using ultrafast x-ray diffraction experiments, we study the layer specific strain response of a dysprosium film within a metallic heterostructure upon femtosecond laser-excitation. The elastic and diffusive transport of energy to an adjacent, non-excited detection layer clearly separates the contributions of strain pulses and thermal excitations in the time domain. We find that energy transfer processes to magnetic excitations significantly modify the observed conventional bipolar strain wave into a unipolar pulse. By modeling the spin system as a saturable energy reservoir that generates substantial contractive stress on ultrafast timescales, we can reproduce the observed strain response and estimate the time- and space dependent magnetic stress. The saturation of the magnetic stress contribution yields a non-monotonous total stress within the nanolayer, which leads to unconventional picosecond strain pulses. KW - Strain measurement KW - Photoexcitations KW - Crystal lattices KW - Femtosecond lasers KW - Thermal effects KW - Heterostructures KW - Ultrafast X-rays KW - Phonons Y1 - 2020 U6 - https://doi.org/10.1063/1.5145315 SN - 2329-7778 VL - 7 IS - 024303 PB - AIP Publishing LLC CY - Melville, NY ER -