TY - JOUR A1 - Meyer, Sebastian Tobias A1 - Ptacnik, Robert A1 - Hillebrand, Helmut A1 - Bessler, Holger A1 - Buchmann, Nina A1 - Ebeling, Anne A1 - Eisenhauer, Nico A1 - Engels, Christof A1 - Fischer, Markus A1 - Halle, Stefan A1 - Klein, Alexandra-Maria A1 - Oelmann, Yvonne A1 - Roscher, Christiane A1 - Rottstock, Tanja A1 - Scherber, Christoph A1 - Scheu, Stefan A1 - Schmid, Bernhard A1 - Schulze, Ernst-Detlef A1 - Temperton, Vicky M. A1 - Tscharntke, Teja A1 - Voigt, Winfried A1 - Weigelt, Alexandra A1 - Wilcke, Wolfgang A1 - Weisser, Wolfgang W. T1 - Biodiversity-multifunctionality relationships depend on identity and number of measured functions JF - Nature Ecology & Evolution N2 - Biodiversity ensures ecosystem functioning and provisioning of ecosystem services, but it remains unclear how biodiversity-ecosystem multifunctionality relationships depend on the identity and number of functions considered. Here, we demonstrate that ecosystem multifunctionality, based on 82 indicator variables of ecosystem functions in a grassland biodiversity experiment, increases strongly with increasing biodiversity. Analysing subsets of functions showed that the effects of biodiversity on multifunctionality were stronger when more functions were included and that the strength of the biodiversity effects depended on the identity of the functions included. Limits to multifunctionality arose from negative correlations among functions and functions that were not correlated with biodiversity. Our findings underline that the management of ecosystems for the protection of biodiversity cannot be replaced by managing for particular ecosystem functions or services and emphasize the need for specific management to protect biodiversity. More plant species from the experimental pool of 60 species contributed to functioning when more functions were considered. An individual contribution to multifunctionality could be demonstrated for only a fraction of the species. Y1 - 2017 U6 - https://doi.org/10.1038/s41559-017-0391-4 SN - 2397-334X VL - 2 IS - 1 SP - 44 EP - 49 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Meyer, Sebastian T. A1 - Ebeling, Anne A1 - Eisenhauer, Nico A1 - Hertzog, Lionel A1 - Hillebrand, Helmut A1 - Milcu, Alexandru A1 - Pompe, Sven A1 - Abbas, Maike A1 - Bessler, Holger A1 - Buchmann, Nina A1 - De Luca, Enrica A1 - Engels, Christof A1 - Fischer, Markus A1 - Gleixner, Gerd A1 - Hudewenz, Anika A1 - Klein, Alexandra-Maria A1 - de Kroon, Hans A1 - Leimer, Sophia A1 - Loranger, Hannah A1 - Mommer, Liesje A1 - Oelmann, Yvonne A1 - Ravenek, Janneke M. A1 - Roscher, Christiane A1 - Rottstock, Tanja A1 - Scherber, Christoph A1 - Scherer-Lorenzen, Michael A1 - Scheu, Stefan A1 - Schmid, Bernhard A1 - Schulze, Ernst-Detlef A1 - Staudler, Andrea A1 - Strecker, Tanja A1 - Temperton, Vicky A1 - Tscharntke, Teja A1 - Vogel, Anja A1 - Voigt, Winfried A1 - Weigelt, Alexandra A1 - Wilcke, Wolfgang A1 - Weisser, Wolfgang W. T1 - Effects of biodiversity strengthen over time as ecosystem functioning declines at low and increases at high biodiversity JF - Ecosphere : the magazine of the International Ecology University KW - biodiversity ecosystem functioning (BEF) KW - ecosystem processes KW - grassland KW - mechanism KW - plant productivity KW - plant species richness KW - temporal effects KW - trophic interactions Y1 - 2016 U6 - https://doi.org/10.1002/ecs2.1619 SN - 2150-8925 VL - 7 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Allan, Eric A1 - Weisser, Wolfgang W. A1 - Fischer, Markus A1 - Schulze, Ernst-Detlef A1 - Weigelt, Alexandra A1 - Roscher, Christiane A1 - Baade, Jussi A1 - Barnard, Romain L. A1 - Bessler, Holger A1 - Buchmann, Nina A1 - Ebeling, Anne A1 - Eisenhauer, Nico A1 - Engels, Christof A1 - Fergus, Alexander J. F. A1 - Gleixner, Gerd A1 - Gubsch, Marlen A1 - Halle, Stefan A1 - Klein, Alexandra Maria A1 - Kertscher, Ilona A1 - Kuu, Annely A1 - Lange, Markus A1 - Le Roux, Xavier A1 - Meyer, Sebastian T. A1 - Migunova, Varvara D. A1 - Milcu, Alexandru A1 - Niklaus, Pascal A. A1 - Oelmann, Yvonne A1 - Pasalic, Esther A1 - Petermann, Jana S. A1 - Poly, Franck A1 - Rottstock, Tanja A1 - Sabais, Alexander C. W. A1 - Scherber, Christoph A1 - Scherer-Lorenzen, Michael A1 - Scheu, Stefan A1 - Steinbeiss, Sibylle A1 - Schwichtenberg, Guido A1 - Temperton, Vicky A1 - Tscharntke, Teja A1 - Voigt, Winfried A1 - Wilcke, Wolfgang A1 - Wirth, Christian A1 - Schmid, Bernhard T1 - A comparison of the strength of biodiversity effects across multiple functions JF - Oecologia N2 - In order to predict which ecosystem functions are most at risk from biodiversity loss, meta-analyses have generalised results from biodiversity experiments over different sites and ecosystem types. In contrast, comparing the strength of biodiversity effects across a large number of ecosystem processes measured in a single experiment permits more direct comparisons. Here, we present an analysis of 418 separate measures of 38 ecosystem processes. Overall, 45 % of processes were significantly affected by plant species richness, suggesting that, while diversity affects a large number of processes not all respond to biodiversity. We therefore compared the strength of plant diversity effects between different categories of ecosystem processes, grouping processes according to the year of measurement, their biogeochemical cycle, trophic level and compartment (above- or belowground) and according to whether they were measures of biodiversity or other ecosystem processes, biotic or abiotic and static or dynamic. Overall, and for several individual processes, we found that biodiversity effects became stronger over time. Measures of the carbon cycle were also affected more strongly by plant species richness than were the measures associated with the nitrogen cycle. Further, we found greater plant species richness effects on measures of biodiversity than on other processes. The differential effects of plant diversity on the various types of ecosystem processes indicate that future research and political effort should shift from a general debate about whether biodiversity loss impairs ecosystem functions to focussing on the specific functions of interest and ways to preserve them individually or in combination. KW - Bottom-up effects KW - Carbon cycling KW - Ecological synthesis KW - Ecosystem processes KW - Grasslands KW - Jena experiment KW - Nitrogen cycling Y1 - 2013 U6 - https://doi.org/10.1007/s00442-012-2589-0 SN - 0029-8549 VL - 173 IS - 1 SP - 223 EP - 237 PB - Springer CY - New York ER - TY - JOUR A1 - Zuppinger-Dingley, D. A1 - Schmid, Bernhard A1 - Chen, Y. A1 - Brandl, H. A1 - van der Heijden, M. G. A. A1 - Joshi, Jasmin Radha T1 - In their native range, invasive plants are held in check by negative soil-feedbacks JF - Ecosphere : the magazine of the International Ecology University N2 - The ability of some plant species to dominate communities in new biogeographical ranges has been attributed to an innate higher competitive ability and release from co-evolved specialist enemies. Specifically, invasive success in the new range might be explained by release from biotic negative soil-feedbacks, which control potentially dominant species in their native range. To test this hypothesis, we grew individuals from sixteen phylogenetically paired European grassland species that became either invasive or naturalized in new ranges, in either sterilized soil or in sterilized soil with unsterilized soil inoculum from their native home range. We found that although the native members of invasive species generally performed better than those of naturalized species, these native members of invasive species also responded more negatively to native soil inoculum than did the native members of naturalized species. This supports our hypothesis that potentially invasive species in their native range are held in check by negative soil-feedbacks. However, contrary to expectation, negative soil-feedbacks in potentially invasive species were not much increased by interspecific competition. There was no significant variation among families between invasive and naturalized species regarding their feedback response (negative vs. neutral). Therefore, we conclude that the observed negative soil feedbacks in potentially invasive species may be quite widespread in European families of typical grassland species. KW - biotic interactions KW - enemy release KW - invasive species KW - native range KW - naturalized species KW - plant invasions KW - plant-soil feedbacks KW - soil inoculation KW - soil sterilization Y1 - 2011 U6 - https://doi.org/10.1890/ES11-00061.1 SN - 2150-8925 VL - 2 IS - 5 PB - Wiley CY - Washington ER - TY - JOUR A1 - Scherber, Christoph A1 - Eisenhauer, Nico A1 - Weisser, Wolfgang W. A1 - Schmid, Bernhard A1 - Voigt, Winfried A1 - Fischer, Markus A1 - Schukze, Ernst-Detlef A1 - Roscher, Christiane A1 - Weigelt, Alexandra A1 - Allan, Eric A1 - Beßler, Holger A1 - Bonkowski, Michael A1 - Buchmann, Nina A1 - Buscot, François A1 - Clement, Lars W. A1 - Ebeling, Anne A1 - Engels, Christof A1 - Halle, Stefan A1 - Kertscher, Ilona A1 - Klein, Alexandra Maria A1 - Koller, Robert A1 - König, Stephan A1 - Kowalski, Esther A1 - Kummer, Volker A1 - Kuu, Annely A1 - Lange, Markus A1 - Lauterbach, Dirk T1 - Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment Y1 - 2010 UR - http://www.nature.com/nature/journal/v468/n7323/full/nature09492.html SN - 0028-0836 ER - TY - JOUR A1 - Hector, Andy A1 - Hautier, Yann A1 - Saner, Philippe A1 - Wacker, Lukas A1 - Bagchi, Robert A1 - Joshi, Jasmin Radha A1 - Scherer-Lorenzen, Michael A1 - Spehn, Eva M. A1 - Bazeley-White, Ellen A1 - Weilenmann, Markus A1 - Caldeira, Maria da Conceição Brálio de Brito A1 - Dimitrakopoulos, Panayiotis G. A1 - Finn, John A. A1 - Huss-Danell, Kerstin A1 - Jumpponen, Ari A1 - Mulder, Christa P. H. A1 - Palmborg, Cecilia A1 - Pereira, J. S. A1 - Siamantziouras, Akis S. D. A1 - Terry, Andrew C. A1 - Troumbis, Andreas Y. A1 - Schmid, Bernhard A1 - Loreau, Michel T1 - General stabilizing effects of plant diversity on grassland productivity through population asynchrony and overyielding N2 - Insurance effects of biodiversity can stabilize the functioning of multispecies ecosystems against environmental variability when differential species' responses lead to asynchronous population dynamics. When responses are not perfectly positively correlated, declines in some populations are compensated by increases in others, smoothing variability in ecosystem productivity. This variance reduction effect of biodiversity is analogous to the risk- spreading benefits of diverse investment portfolios in financial markets. We use data from the BIODEPTH network of grassland biodiversity experiments to perform a general test for stabilizing effects of plant diversity on the temporal variability of individual species, functional groups, and aggregate communities. We tested three potential mechanisms: reduction of temporal variability through population asynchrony; enhancement of long-term average performance through positive selection effects; and increases in the temporal mean due to overyielding. Our results support a stabilizing effect of diversity on the temporal variability of grassland aboveground annual net primary production through two mechanisms. Two-species communities with greater population asynchrony were more stable in their average production over time due to compensatory fluctuations. Overyielding also stabilized productivity by increasing levels of average biomass production relative to temporal variability. However, there was no evidence for a performance-enhancing effect on the temporal mean through positive selection effects. In combination with previous work, our results suggest that stabilizing effects of diversity on community productivity through population asynchrony and overyielding appear to be general in grassland ecosystems. Y1 - 2010 UR - http://esapubs.org/esapubs/journals/ecology.htm SN - 0012-9658 ER - TY - JOUR A1 - van Kleunen, Mark A1 - Fischer, Markus A1 - Schmid, Bernhard T1 - Three generations under low versus high neighborhood density affect the life history of a clonal plant through differential selection and genetic drift N2 - We tested whether neighborhood density affects the clonal life history of the stoloniferous plant Ranunculus reptans through selection and genetic drift. After three generations of sexual reproduction of 16 low- and 16 high- density lines, we studied traits related to growth form and reproduction in a common competition free environment. A 7.7% lower branching frequency and slightly longer internodes indicated an evolutionary shift towards a less compact growth form under high neighborhood density, but because stolons grew also more vertically, horizontal spread per ramet was slightly decreased. Neighborhood density had no directional effects on the evolution of allocation to sexual and vegetative reproduction in R. reptans. Variation among replicated high-density lines was significantly lower than among replicated low-density lines in both growth form and reproductive characteristics, indicating less pronounced genetic drift under high neighborhood density. This study demonstrates that a clonal plant can respond to selection imposed by neighborhood density. Moreover, it shows that the effect of random genetic drift increases with decreasing neighborhood density. In a declining species, such as R. reptans in central Europe, this may lower the potential for adaptive evolutionary change and increase extinction risk Y1 - 2005 ER - TY - JOUR A1 - Fischer, Markus A1 - Pfisterer, A. A1 - Joshi, Jasmin Radha A1 - Schmid, Bernhard T1 - Rapid decay of diversity-productivity relationships after invasion of experimental plant communities Y1 - 2004 ER - TY - JOUR A1 - Fischer, Markus A1 - van Kleunen, Mark A1 - Schmid, Bernhard T1 - Experimental life-history evolution: selection on the growth form of a clonal plant on its plasticity N2 - The growth form along the continuum from compact phalanx plants to more loosely packed guerilla plants is an important life-history trait in clonal plants. Prerequisite for its evolution is heritable genetic variation. Starting with 102 genotypes of the stoloniferous herb Ranunculus reptans, we performed one selection experiment on spatial spread per rosette as measure of guerillaness (broad-sense heritability 0.198) and another on plasticity in this trait in response to competition (broad-sense heritability 0.067). After two generations, spatial spread was 36.9% higher in the high line than in the low line (realized heritability +/- SE 0.149 +/- 0.039). Moreover, compared with the low line genotypes of the high line had fewer rosettes, a lower proportion of flowering rosettes, a higher proportion of rooted rosettes, more branches per rosette, longer internodes and longer leaves. In the second experiment, we found no significant direct response to selection for high and low plasticity in spatial spread (realized heritability +/- SE - 0.029 +/- 0.063), despite a significant correlated response in plasticity in the length of the first three stolon internodes. Our study indicates a high potential for further evolution of the clonal growth form in R. reptans, but not for its plasticity, and it demonstrates that the clonal growth form does not evolve independently of other clonal life- history characteristics Y1 - 2004 SN - 1010- 061x ER - TY - JOUR A1 - van Kleunen, Mark A1 - Ramponi, G. A1 - Schmid, Bernhard T1 - Effects of herbivory simulated by clipping and jasmonic acid on growth and reproduction in Solidago canadensis Y1 - 2004 ER -