TY - JOUR A1 - Meixner, Johannes M. A1 - Nixon, Jessie S. A1 - Laubrock, Jochen T1 - The perceptual span is dynamically adjusted in response to foveal load by beginning readers JF - Journal of experimental psychology : general N2 - The perceptual span describes the size of the visual field from which information is obtained during a fixation in reading. Its size depends on characteristics of writing system and reader, but-according to the foveal load hypothesis-it is also adjusted dynamically as a function of lexical processing difficulty. Using the moving window paradigm to manipulate the amount of preview, here we directly test whether the perceptual span shrinks as foveal word difficulty increases. We computed the momentary size of the span from word-based eye-movement measures as a function of foveal word frequency, allowing us to separately describe the perceptual span for information affecting spatial saccade targeting and temporal saccade execution. First fixation duration and gaze duration on the upcoming (parafoveal) word N + 1 were significantly shorter when the current (foveal) word N was more frequent. We show that the word frequency effect is modulated by window size. Fixation durations on word N + 1 decreased with high-frequency words N, but only for large windows, that is, when sufficient parafoveal preview was available. This provides strong support for the foveal load hypothesis. To investigate the development of the foveal load effect, we analyzed data from three waves of a longitudinal study on the perceptual span with German children in Grades 1 to 6. Perceptual span adjustment emerged early in development at around second grade and remained stable in later grades. We conclude that the local modulation of the perceptual span indicates a general cognitive process, perhaps an attentional gradient with rapid readjustment. KW - eye movements KW - attention KW - perceptual span KW - foveal load KW - reading KW - development Y1 - 2022 U6 - https://doi.org/10.1037/xge0001140 SN - 0096-3445 SN - 1939-2222 VL - 151 IS - 6 SP - 1219 EP - 1232 PB - American Psychological Association CY - Washington ER - TY - JOUR A1 - Cajar, Anke A1 - Schneeweiss, Paul A1 - Engbert, Ralf A1 - Laubrock, Jochen T1 - Coupling of attention and saccades when viewing scenes with central and peripheral degradation JF - Journal of vision N2 - Degrading real-world scenes in the central or the peripheral visual field yields a characteristic pattern: Mean saccade amplitudes increase with central and decrease with peripheral degradation. Does this pattern reflect corresponding modulations of selective attention? If so, the observed saccade amplitude pattern should reflect more focused attention in the central region with peripheral degradation and an attentional bias toward the periphery with central degradation. To investigate this hypothesis, we measured the detectability of peripheral (Experiment 1) or central targets (Experiment 2) during scene viewing when low or high spatial frequencies were gaze-contingently filtered in the central or the peripheral visual field. Relative to an unfiltered control condition, peripheral filtering induced a decrease of the detection probability for peripheral but not for central targets (tunnel vision). Central filtering decreased the detectability of central but not of peripheral targets. Additional post hoc analyses are compatible with the interpretation that saccade amplitudes and direction are computed in partial independence. Our experimental results indicate that task-induced modulations of saccade amplitudes reflect attentional modulations. KW - scene viewing KW - saccades KW - attention KW - gaze-contingent displays KW - spatial frequencies KW - tunnel vision Y1 - 2016 U6 - https://doi.org/10.1167/16.2.8 SN - 1534-7362 VL - 16 PB - Association for Research in Vision and Opthalmology CY - Rockville ER - TY - GEN A1 - Cajar, Anke A1 - Schneeweiß, Paul A1 - Engelbert, Ralf A1 - Laubrock, Jochen T1 - Coupling of attention and saccades when viewing scenes with central and peripheral degradation N2 - Degrading real-world scenes in the central or the peripheral visual field yields a characteristic pattern: Mean saccade amplitudes increase with central and decrease with peripheral degradation. Does this pattern reflect corresponding modulations of selective attention? If so, the observed saccade amplitude pattern should reflect more focused attention in the central region with peripheral degradation and an attentional bias toward the periphery with central degradation. To investigate this hypothesis, we measured the detectability of peripheral (Experiment 1) or central targets (Experiment 2) during scene viewing when low or high spatial frequencies were gaze-contingently filtered in the central or the peripheral visual field. Relative to an unfiltered control condition, peripheral filtering induced a decrease of the detection probability for peripheral but not for central targets (tunnel vision). Central filtering decreased the detectability of central but not of peripheral targets. Additional post hoc analyses are compatible with the interpretation that saccade amplitudes and direction are computed in partial independence. Our experimental results indicate that task-induced modulations of saccade amplitudes reflect attentional modulations. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 316 KW - scene viewing KW - saccades KW - attention KW - gaze-contingent displays KW - spatial frequencies KW - tunnel vision Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-394918 ER - TY - JOUR A1 - Cajar, Anke A1 - Schneeweiß, Paul A1 - Engbert, Ralf A1 - Laubrock, Jochen T1 - Coupling of attention and saccades when viewing scenes with central and peripheral degradation JF - Journal of Vision N2 - Degrading real-world scenes in the central or the peripheral visual field yields a characteristic pattern: Mean saccade amplitudes increase with central and decrease with peripheral degradation. Does this pattern reflect corresponding modulations of selective attention? If so, the observed saccade amplitude pattern should reflect more focused attention in the central region with peripheral degradation and an attentional bias toward the periphery with central degradation. To investigate this hypothesis, we measured the detectability of peripheral (Experiment 1) or central targets (Experiment 2) during scene viewing when low or high spatial frequencies were gaze-contingently filtered in the central or the peripheral visual field. Relative to an unfiltered control condition, peripheral filtering induced a decrease of the detection probability for peripheral but not for central targets (tunnel vision). Central filtering decreased the detectability of central but not of peripheral targets. Additional post hoc analyses are compatible with the interpretation that saccade amplitudes and direction are computed in partial independence. Our experimental results indicate that task-induced modulations of saccade amplitudes reflect attentional modulations. KW - scene viewing KW - saccades KW - attention KW - gaze-contingent displays KW - spatial frequencies KW - tunnel vision Y1 - 2016 U6 - https://doi.org/10.1167/16.2.8 SN - 1534-7362 VL - 16 IS - 2 SP - 1 EP - 19 PB - ARVO CY - Rockville, Md. ER -