TY - JOUR A1 - Opitz, Stephan A1 - Ramisch, Arne A1 - Mischke, Steffen A1 - Diekmann, Bernhard T1 - Holocene lake stages and thermokarst dynamics in a discontinuous permafrost affected region, north-eastern Tibetan Plateau JF - Journal of Asian earth sciences N2 - Sediments of a thermokarst system on the north-eastern Tibetan Plateau were studied to infer changes in the lacustrine depositional environment related to climatic changes since the early Holocene. The thermokarst pond with a length of 360 m is situated in a 14.5 x 6 km tectonically unaffected intermontane basin, which is underlain by discontinuous permafrost. A lake sediment core and bankside lacustrine onshore deposits were analysed. Additionally, fossil lake sediments were investigated, which document a former lake-level high stand. The sediments are mainly composed of marls with variable amounts of silt carbonate micrite, and organic matter. On the basis of sedimentological (grain size data), geochemical (XRF), mineralogical (XRD) and micropaleontological data (ostracods and chironomide assemblages) a reconstruction of a paleolake environment was achieved. Lacustrine sediments with endogenic carbonate precipitation suggest a lacustrine environment since at least 19.0 cal ka BP. However, because of relocation and reworking processes in the lake, the sediments did not provide distinct information about the ultimate formation of the lake. The high amount of endogenic carbonate suggests prolonged still-water conditions at about 9.3 cal ka BP. Ostracod shells and chironomid head capsules in fossil lake sediments indicate at least one former lake-level high stand, which were developed between the early and middle Holocene. From the late Holocene the area was possibly characterized by a lake-level decline, documented by a hiatus between lacustrine sediments and a reworked loess or loess-like horizon. After the lake-level decline and the following warming period, the area was affected by thermally-induced subsidence and a re-flooding of the basin because of thawing permafrost. KW - Palaeoenvironmental reconstruction KW - Palaeolimnology KW - Lake level KW - XRD Y1 - 2013 U6 - https://doi.org/10.1016/j.jseaes.2013.08.006 SN - 1367-9120 SN - 1878-5786 VL - 76 IS - 17 SP - 85 EP - 94 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Nazarova, Larisa B. A1 - de Hoog, Verena A1 - Hoff, Ulrike A1 - Dirksen, Oleg A1 - Diekmann, Bernhard T1 - Late Holocene climate and environmental changes in Kamchatka inferred from the subfossil chironomid record JF - Quaternary science reviews : the international multidisciplinary research and review journal N2 - This study presents a reconstruction of the Late Holocene climate in Kamchatka based on chironomid remains from a 332 cm long composite sediment core recovered from Dvuyurtochnoe Lake (Two-Yurts Lake, TYL) in central Kamchatka. The oldest recovered sediments date to about 4500 cal years BP. Chironomid head capsules from TYL reflect a rich and diverse fauna. An unknown morphotype of Tanytarsini, Tanytarsus type klein, was found in the lake sediments. Our analysis reveals four chironomid assemblage zones reflecting four different climatic periods in the Late Holocene. Between 4500 and 4000 cal years BP, the chironomid composition indicates a high lake level, well-oxygenated lake water conditions and close to modern temperatures (similar to 13 degrees C). From 4000 to 1000 cal years BP, two consecutive warm intervals were recorded, with the highest reconstructed temperature reaching 16.8 degrees C between 3700 and 2800 cal years BP. Cooling trend, started around 1100 cal years BP led to low temperatures during the last stage of the Holocene. Comparison with other regional studies has shown that termination of cooling at the beginning of late Holocene is relatively synchronous in central Kamchatka, South Kurile, Bering and Japanese Islands and take place around 3700 cal years BP. From ca 3700 cal years BP to the last millennium, a newly strengthened climate continentality accompanied by general warming trend with minor cool excursions led to apparent spatial heterogeneity of climatic patterns in the region. Some timing differences in climatic changes reconstructed from chironomid record of TYL sediments and late Holocene events reconstructed from other sites and other proxies might be linked to differences in local forcing mechanisms or caused by the different degree of dating precision, the different temporal resolution, and the different sensitive responses of climate proxies to the climate variations. Further high-resolution stratigraphic studies in this region are needed to understand the spatially complex pattern of climate change in Holocene in Kamchatka and the surrounding region. KW - Kamchatka KW - Holocene KW - Chironomids KW - Palaeoclimate KW - Temperature Y1 - 2013 U6 - https://doi.org/10.1016/j.quascirev.2013.01.018 SN - 0277-3791 VL - 67 IS - 9 SP - 81 EP - 92 PB - Elsevier CY - Oxford ER -