TY - JOUR A1 - Riahi, Keywan A1 - Bertram, Christoph A1 - Huppmann, Daniel A1 - Rogelj, Joeri A1 - Bosetti, Valentina A1 - Cabardos, Anique-Marie A1 - Deppermann, Andre A1 - Drouet, Laurent A1 - Frank, Stefan A1 - Fricko, Oliver A1 - Fujimori, Shinichiro A1 - Harmsen, Mathijs A1 - Hasegawa, Tomoko A1 - Krey, Volker A1 - Luderer, Gunnar A1 - Paroussos, Leonidas A1 - Schaeffer, Roberto A1 - Weitzel, Matthias A1 - van der Zwaan, Bob A1 - Vrontisi, Zoi A1 - Longa, Francesco Dalla A1 - Després, Jacques A1 - Fosse, Florian A1 - Fragkiadakis, Kostas A1 - Gusti, Mykola A1 - Humpenöder, Florian A1 - Keramidas, Kimon A1 - Kishimoto, Paul A1 - Kriegler, Elmar A1 - Meinshausen, Malte A1 - Nogueira, Larissa Pupo A1 - Oshiro, Ken A1 - Popp, Alexander A1 - Rochedo, Pedro R. R. A1 - Ünlü, Gamze A1 - van Ruijven, Bas A1 - Takakura, Junya A1 - Tavoni, Massimo A1 - van Vuuren, Detlef P. A1 - Zakeri, Behnam T1 - Cost and attainability of meeting stringent climate targets without overshoot JF - Nature climate change N2 - Global emissions scenarios play a critical role in the assessment of strategies to mitigate climate change. The current scenarios, however, are criticized because they feature strategies with pronounced overshoot of the global temperature goal, requiring a long-term repair phase to draw temperatures down again through net-negative emissions. Some impacts might not be reversible. Hence, we explore a new set of net-zero CO2 emissions scenarios with limited overshoot. We show that upfront investments are needed in the near term for limiting temperature overshoot but that these would bring long-term economic gains. Our study further identifies alternative configurations of net-zero CO2 emissions systems and the roles of different sectors and regions for balancing sources and sinks. Even without net-negative emissions, CO2 removal is important for accelerating near-term reductions and for providing an anthropogenic sink that can offset the residual emissions in sectors that are hard to abate. Y1 - 2021 U6 - https://doi.org/10.1038/s41558-021-01215-2 SN - 1758-678X SN - 1758-6798 VL - 11 IS - 12 SP - 1063 EP - 1069 PB - Nature Publishing Group CY - London ER - TY - JOUR A1 - van Soest, Heleen L. A1 - Aleluia Reis, Lara A1 - Baptista, Luiz Bernardo A1 - Bertram, Christoph A1 - Després, Jacques A1 - Drouet, Laurent A1 - den Elzen, Michel A1 - Fragkos, Panagiotis A1 - Fricko, Oliver A1 - Fujimori, Shinichiro A1 - Grant, Neil A1 - Harmsen, Mathijs A1 - Iyer, Gokul A1 - Keramidas, Kimon A1 - Köberle, Alexandre C. A1 - Kriegler, Elmar A1 - Malik, Aman A1 - Mittal, Shivika A1 - Oshiro, Ken A1 - Riahi, Keywan A1 - Roelfsema, Mark A1 - van Ruijven, Bas A1 - Schaeffer, Roberto A1 - Silva Herran, Diego A1 - Tavoni, Massimo A1 - Ünlü, Gamze A1 - Vandyck, Toon A1 - van Vuuren, Detlef P. T1 - Global roll-out of comprehensive policy measures may aid in bridging emissions gap JF - Nature communications N2 - Closing the emissions gap between Nationally Determined Contributions (NDCs) and the global emissions levels needed to achieve the Paris Agreement’s climate goals will require a comprehensive package of policy measures. National and sectoral policies can help fill the gap, but success stories in one country cannot be automatically replicated in other countries. They need to be adapted to the local context. Here, we develop a new Bridge scenario based on nationally relevant, short-term measures informed by interactions with country experts. These good practice policies are rolled out globally between now and 2030 and combined with carbon pricing thereafter. We implement this scenario with an ensemble of global integrated assessment models. We show that the Bridge scenario closes two-thirds of the emissions gap between NDC and 2 °C scenarios by 2030 and enables a pathway in line with the 2 °C goal when combined with the necessary long-term changes, i.e. more comprehensive pricing measures after 2030. The Bridge scenario leads to a scale-up of renewable energy (reaching 52%–88% of global electricity supply by 2050), electrification of end-uses, efficiency improvements in energy demand sectors, and enhanced afforestation and reforestation. Our analysis suggests that early action via good-practice policies is less costly than a delay in global climate cooperation. KW - climate-change mitigation KW - climate-change policy Y1 - 2021 U6 - https://doi.org/10.1038/s41467-021-26595-z N1 - Corrigendum: https://doi.org/10.1038/s41467-022-27969-7 VL - 12 IS - 1 PB - Nature Publishing Group UK CY - London ER -