TY - JOUR A1 - Guljamow, Arthur A1 - Barchewitz, Tino A1 - Große, Rebecca A1 - Timm, Stefan A1 - Hagemann, Martin A1 - Dittmann, Elke T1 - Diel Variations of Extracellular Microcystin Influence the Subcellular Dynamics of RubisCO in Microcystis aeruginosa PCC 7806 JF - Microorganisms : open access journal N2 - The ubiquitous freshwater cyanobacterium Microcystis is remarkably successful, showing a high tolerance against fluctuations in environmental conditions. It frequently forms dense blooms which can accumulate significant amounts of the hepatotoxin microcystin, which plays an extracellular role as an infochemical but also acts intracellularly by interacting with proteins of the carbon metabolism, notably with the CO2 fixing enzyme RubisCO. Here we demonstrate a direct link between external microcystin and its intracellular targets. Monitoring liquid cultures of Microcystis in a diel experiment revealed fluctuations in the extracellular microcystin content that correlate with an increase in the binding of microcystin to intracellular proteins. Concomitantly, reversible relocation of RubisCO from the cytoplasm to the cell’s periphery was observed. These variations in RubisCO localization were especially pronounced with cultures grown at higher cell densities. We replicated these effects by adding microcystin externally to cultures grown under continuous light. Thus, we propose that microcystin may be part of a fast response to conditions of high light and low carbon that contribute to the metabolic flexibility and the success of Microcystis in the field. KW - cyanobacterial bloom KW - Microcystis KW - microcystin KW - RubisCO KW - extracellular signaling Y1 - 2021 U6 - https://doi.org/10.3390/microorganisms9061265 SN - 2076-2607 VL - 9 IS - 6 PB - MDPI CY - Basel ER - TY - JOUR A1 - Köker, Latife A1 - Akçaalan, Reyhan A1 - Dittmann, Elke A1 - Albay, Meriç T1 - Depth profiles of protein-bound microcystin in Küçükçekmece Lagoon JF - Toxicon : an international journal devoted to the exchange of knowledge on the poisons derived from the tissues of plants and animals ; official journal of the International Society on Toxinology N2 - Microcystis is the most commonly found toxic cyanobacterial genus around the world and has a negative impact on the ecosystem. As a predominant producer of the potent hepatotoxin microcystin (MC), the genus causes outbreaks in freshwaters worldwide. Standard analytical methods that are used for the detection of microcystin variants can only measure the free form of microcystin in cells. Since microcystin was found as free and proteinbound forms in the cells, a significant proportion of microcystin is underestimated with analytical methods. The aim of the study was to measure protein-bound microcystins and determine the environmental factors that affect the binding of microcystin to proteins. Samples were taken at depths of surface, 1 m, 5 m, 10 m, 15 m, and 18 m in Kucukcekmece Lagoon to analyze depth profiles of two different microcystin forms from June to September 2012 at regular monthly intervals. Our findings suggest that the most important parameter affecting proteinbound microcystin at surface water is high light. Due to favorable environmental conditions such as temperature, light, and physicochemical parameters, the higher microcystin contents, both free and protein-bound MCs, were found in summer periods. KW - Microcystis KW - Microcystin KW - Protein-bound microcystin KW - Mcy gene KW - Kucukcekmece Lagoon Y1 - 2021 U6 - https://doi.org/10.1016/j.toxicon.2021.05.005 SN - 0041-0101 SN - 1879-3150 VL - 198 SP - 156 EP - 163 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Soeriyadi, Angela H. A1 - Ongley, Sarah E. A1 - Kehr, Jan-Christoph A1 - Pickford, Russel A1 - Dittmann, Elke A1 - Neilan, Brett A. T1 - Tailoring enzyme stringency masks the multispecificity of a lyngbyatoxin (indolactam alkaloid) nonribosomal peptide synthetase JF - ChemBioChem N2 - Indolactam alkaloids are activators of protein kinase C (PKC) and are of pharmacological interest for the treatment of pathologies involving PKC dysregulation. The marine cyanobacterial nonribosomal peptide synthetase (NRPS) pathway for lyngbyatoxin biosynthesis, which we previously expressed in E. coli, was studied for its amenability towards the biosynthesis of indolactam variants. Modification of culture conditions for our E. coli heterologous expression host and analysis of pathway products suggested the native lyngbyatoxin pathway NRPS does possess a degree of relaxed specificity. Site-directed mutagenesis of two positions within the adenylation domain (A-domain) substrate-binding pocket was performed, resulting in an alteration of substrate preference between valine, isoleucine, and leucine. We observed relative congruence of in vitro substrate activation by the LtxA NRPS to in vivo product formation. While there was a preference for isoleucine over leucine, the substitution of alternative tailoring domains may unveil the true in vivo effects of the mutations introduced herein. KW - a domain KW - indolactams KW - MbtH KW - natural products KW - teleocidin Y1 - 2021 U6 - https://doi.org/10.1002/cbic.202100574 SN - 1439-4227 SN - 1439-7633 VL - 23 IS - 3 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Nwosu, Ebuka Canisius A1 - Roeser, Patricia Angelika A1 - Yang, Sizhong A1 - Ganzert, Lars A1 - Dellwig, Olaf A1 - Pinkerneil, Sylvia A1 - Brauer, Achim A1 - Dittmann, Elke A1 - Wagner, Dirk A1 - Liebner, Susanne T1 - From water into sediment-tracing freshwater cyanobacteria via DNA analyses JF - Microorganisms : open access journal N2 - Sedimentary ancient DNA-based studies have been used to probe centuries of climate and environmental changes and how they affected cyanobacterial assemblages in temperate lakes. Due to cyanobacteria containing potential bloom-forming and toxin-producing taxa, their approximate reconstruction from sediments is crucial, especially in lakes lacking long-term monitoring data. To extend the resolution of sediment record interpretation, we used high-throughput sequencing, amplicon sequence variant (ASV) analysis, and quantitative PCR to compare pelagic cyanobacterial composition to that in sediment traps (collected monthly) and surface sediments in Lake Tiefer See. Cyanobacterial composition, species richness, and evenness was not significantly different among the pelagic depths, sediment traps and surface sediments (p > 0.05), indicating that the cyanobacteria in the sediments reflected the cyanobacterial assemblage in the water column. However, total cyanobacterial abundances (qPCR) decreased from the metalimnion down the water column. The aggregate-forming (Aphanizomenon) and colony-forming taxa (Snowella) showed pronounced sedimentation. In contrast, Planktothrix was only very poorly represented in sediment traps (meta- and hypolimnion) and surface sediments, despite its highest relative abundance at the thermocline (10 m water depth) during periods of lake stratification (May-October). We conclude that this skewed representation in taxonomic abundances reflects taphonomic processes, which should be considered in future DNA-based paleolimnological investigations. KW - Aphanizomenon KW - Planktothrix KW - Snowella KW - cyanobacteria sedimentation KW - lake monitoring KW - sedimentary ancient DNA KW - sediment traps KW - environmental reconstruction Y1 - 2021 U6 - https://doi.org/10.3390/microorganisms9081778 SN - 2076-2607 VL - 9 IS - 8 PB - MDPI CY - Basel ER - TY - JOUR A1 - Nwosu, Ebuka Canisius A1 - Roeser, Patricia Angelika A1 - Yang, Sizhong A1 - Pinkerneil, Sylvia A1 - Ganzert, Lars A1 - Dittmann, Elke A1 - Brauer, Achim A1 - Wagner, Dirk A1 - Liebner, Susanne T1 - Species-level spatio-temporal dynamics of cyanobacteria in a hard-water temperate lake in the Southern Baltics JF - Frontiers in microbiology N2 - Cyanobacteria are important primary producers in temperate freshwater ecosystems. However, studies on the seasonal and spatial distribution of cyanobacteria in deep lakes based on high-throughput DNA sequencing are still rare. In this study, we combined monthly water sampling and monitoring in 2019, amplicon sequence variants analysis (ASVs; a proxy for different species) and quantitative PCR targeting overall cyanobacteria abundance to describe the seasonal and spatial dynamics of cyanobacteria in the deep hard-water oligo-mesotrophic Lake Tiefer See, NE Germany. We observed significant seasonal variation in the cyanobacterial community composition (p < 0.05) in the epi- and metalimnion layers, but not in the hypolimnion. In winter-when the water column is mixed-picocyanobacteria (Synechococcus and Cyanobium) were dominant. With the onset of stratification in late spring, we observed potential niche specialization and coexistence among the cyanobacteria taxa driven mainly by light and nutrient dynamics. Specifically, ASVs assigned to picocyanobacteria and the genus Planktothrix were the main contributors to the formation of deep chlorophyll maxima along a light gradient. While Synechococcus and different Cyanobium ASVs were abundant in the epilimnion up to the base of the euphotic zone from spring to fall, Planktothrix mainly occurred in the metalimnetic layer below the euphotic zone where also overall cyanobacteria abundance was highest in summer. Our data revealed two potentially psychrotolerant (cold-adapted) Cyanobium species that appear to cope well under conditions of lower hypolimnetic water temperature and light as well as increasing sediment-released phosphate in the deeper waters in summer. The potential cold-adapted Cyanobium species were also dominant throughout the water column in fall and winter. Furthermore, Snowella and Microcystis-related ASVs were abundant in the water column during the onset of fall turnover. Altogether, these findings suggest previously unascertained and considerable spatiotemporal changes in the community of cyanobacteria on the species level especially within the genus Cyanobium in deep hard-water temperate lakes. KW - Cyanobium KW - picocyanobacteria diversity KW - amplicon sequencing KW - lake monitoring KW - ecological succession KW - lake stratification KW - psychrotolerant Y1 - 2021 U6 - https://doi.org/10.3389/fmicb.2021.761259 SN - 1664-302X VL - 12 PB - Frontiers Media CY - Lausanne ER -