TY - JOUR A1 - Bauch, Marcel A1 - Fudickar, Werner A1 - Linker, Torsten T1 - Stereoselective [4+2] Cycloaddition of Singlet Oxygen to Naphthalenes Controlled by Carbohydrates JF - Molecules : a journal of synthetic chemistry and natural product chemistry N2 - Stereoselective reactions of singlet oxygen are of current interest. Since enantioselective photooxygenations have not been realized efficiently, auxiliary control is an attractive alternative. However, the obtained peroxides are often too labile for isolation or further transformations into enantiomerically pure products. Herein, we describe the oxidation of naphthalenes by singlet oxygen, where the face selectivity is controlled by carbohydrates for the first time. The synthesis of the precursors is easily achieved starting from naphthoquinone and a protected glucose derivative in only two steps. Photooxygenations proceed smoothly at low temperature, and we detected the corresponding endoperoxides as sole products by NMR. They are labile and can thermally react back to the parent naphthalenes and singlet oxygen. However, we could isolate and characterize two enantiomerically pure peroxides, which are sufficiently stable at room temperature. An interesting influence of substituents on the stereoselectivities of the photooxygenations has been found, ranging from 51:49 to up to 91:9 dr (diastereomeric ratio). We explain this by a hindered rotation of the carbohydrate substituents, substantiated by a combination of NOESY measurements and theoretical calculations. Finally, we could transfer the chiral information from a pure endoperoxide to an epoxide, which was isolated after cleavage of the sugar chiral auxiliary in enantiomerically pure form. KW - singlet oxygen KW - photooxygenation KW - naphthalenes KW - carbohydrates KW - stereoselectivity KW - auxiliary control KW - [4+2] cycloaddition Y1 - 2021 U6 - https://doi.org/10.3390/molecules26040804 SN - 1420-3049 VL - 16 IS - 4 PB - MDPI CY - Basel ER - TY - JOUR A1 - Fudickar, Werner A1 - Bauch, Marcel A1 - Ihmels, Heiko A1 - Linker, Torsten T1 - DNA-triggered enhancement of singlet oxygen production by pyridinium alkynylanthracenes JF - Chemistry - a European journal N2 - There is an ongoing interest in O-1(2) sensitizers, whose activity is selectively controlled by their interaction with DNA. To this end, we synthesized three isomeric pyridinium alkynylanthracenes 2 o-p and a water-soluble trapping reagent for O-1(2). In water and in the absence of DNA, these dyes show a poor efficiency to sensitize the photooxygenation of the trapping reagent as they decompose due to electron transfer processes. In contrast, in the presence of DNA O-1(2) is generated from the excited DNA-bound ligand. The interactions of 2 o-p with DNA were investigated by thermal DNA melting studies, UV/vis and fluorescence spectroscopy, and linear and circular dichroism spectroscopy. Our studies revealed an intercalative binding with an orientation of the long pyridyl-alkynyl axis parallel to the main axis of the DNA base pairs. In the presence of poly(dA : dT), all three isomers show an enhanced formation of singlet oxygen, as indicated by the reaction of the latter with the trapping reagent. With green light irradiation of isomer 2 o in poly(dA : dT), the conversion rate of the trapping reagent is enhanced by a factor >10. The formation of O-1(2) was confirmed by control experiments under anaerobic conditions, in deuterated solvents, or by addition of O-1(2) quenchers. When bound to poly(dG : dC), the opposite effect was observed only for isomers 2 o and 2 m, namely the trapping reagent reacted significantly slower. Overall, we showed that pyridinium alkynylanthracenes are very useful intercalators, that exhibit an enhanced photochemical O-1(2) generation in the DNA-bound state. KW - Anthracene KW - DNA KW - intercalations KW - photochemistry KW - singlet oxygen Y1 - 2021 U6 - https://doi.org/10.1002/chem.202101918 SN - 1521-3765 VL - 27 IS - 54 SP - 13591 EP - 13604 PB - Wiley-VCH CY - Weinheim ER -