TY - GEN A1 - Schneider, Ralf A1 - Weigert, Florian A1 - Lesnyak, Vladimir A1 - Leubner, Susanne A1 - Lorenz, Tommy A1 - Behnke, Thomas A1 - Dubavik, Aliaksei A1 - Joswig, Jan-Ole A1 - Resch-Genger, Ute A1 - Gaponik, Nikolai A1 - Eychmüller, Alexander T1 - pH and concentration dependence of the optical properties of thiol-capped CdTe nanocrystals in water and D2O N2 - The optical properties of semiconductor nanocrystals (SC NCs) are largely controlled by their size and surface chemistry, i.e., the chemical composition and thickness of inorganic passivation shells and the chemical nature and number of surface ligands as well as the strength of their bonds to surface atoms. The latter is particularly important for CdTe NCs, which – together with alloyed CdxHg1−xTe – are the only SC NCs that can be prepared in water in high quality without the need for an additional inorganic passivation shell. Aiming at a better understanding of the role of stabilizing ligands for the control of the application-relevant fluorescence features of SC NCs, we assessed the influence of two of the most commonly used monodentate thiol ligands, thioglycolic acid (TGA) and mercaptopropionic acid (MPA), on the colloidal stability, photoluminescence (PL) quantum yield (QY), and PL decay behavior of a set of CdTe NC colloids. As an indirect measure for the strength of the coordinative bond of the ligands to SC NC surface atoms, the influence of the pH (pD) and the concentration on the PL properties of these colloids was examined in water and D2O and compared to the results from previous dilution studies with a set of thiol-capped Cd1−xHgxTe SC NCs in D2O. As a prerequisite for these studies, the number of surface ligands was determined photometrically at different steps of purification after SC NC synthesis with Ellman's test. Our results demonstrate ligand control of the pH-dependent PL of these SC NCs, with MPA-stabilized CdTe NCs being less prone to luminescence quenching than TGA-capped ones. For both types of CdTe colloids, ligand desorption is more pronounced in H2O compared to D2O, underlining also the role of hydrogen bonding and solvent molecules. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 332 Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-395143 ER - TY - JOUR A1 - Koshkina, Olga A1 - Westmeier, Dana A1 - Lang, Thomas A1 - Bantz, Christoph A1 - Hahlbrock, Angelina A1 - Würth, Christian A1 - Resch-Genger, Ute A1 - Braun, Ulrike A1 - Thiermann, Raphael A1 - Weise, Christoph A1 - Eravci, Murat A1 - Mohr, Benjamin A1 - Schlaad, Helmut A1 - Stauber, Roland H. A1 - Docter, Dominic A1 - Bertin, Annabelle A1 - Maskos, Michael T1 - Tuning the Surface of Nanoparticles: Impact of Poly(2-ethyl-2-oxazoline) on Protein Adsorption in Serum and Cellular Uptake JF - Macromolecular bioscience N2 - Due to the adsorption of biomolecules, the control of the biodistribution of nanoparticles is still one of the major challenges of nanomedicine. Poly(2-ethyl-2-oxazoline) (PEtOx) for surface modification of nanoparticles is applied and both protein adsorption and cellular uptake of PEtOxylated nanoparticles versus nanoparticles coated with poly(ethylene glycol) (PEG) and non-coated positively and negatively charged nanoparticles are compared. Therefore, fluorescent poly(organosiloxane) nanoparticles of 15 nm radius are synthesized, which are used as a scaffold for surface modification in a grafting onto approach. With multi-angle dynamic light scattering, asymmetrical flow field-flow fractionation, gel electrophoresis, and liquid chromatography-mass spectrometry, it is demonstrated that protein adsorption on PEtOxylated nanoparticles is extremely low, similar as on PEGylated nanoparticles. Moreover, quantitative microscopy reveals that PEtOxylation significantly reduces the non-specific cellular uptake, particularly by macrophage-like cells. Collectively, studies demonstrate that PEtOx is a very effective alternative to PEG for stealth modification of the surface of nanoparticles. KW - cellular uptake KW - nanoparticles KW - poly(2-ethyl-2oxazoline) KW - poly(ethylene glycol) KW - protein adsorption Y1 - 2016 U6 - https://doi.org/10.1002/mabi.201600074 SN - 1616-5187 SN - 1616-5195 VL - 16 SP - 1287 EP - 1300 PB - Wiley-VCH CY - Weinheim ER -