TY - JOUR A1 - Rader, Oliver A1 - Pampuch, Carsten A1 - Shikin, A. M. A1 - Gudat, Wolfgang A1 - Okabayashi, J. A1 - Mizokawa, T. A1 - Fujimori, A. A1 - Hayashi, T. A1 - Tanaka, M. A1 - Tanaka, A. A1 - Kimura, A. T1 - Resonant photoemission of Ga1-xMnxAs at the Mn L edge N2 - Ga1-xMnxAs, x=0.043, has been grown ex situ on GaAs(100) by low-temperature molecular-beam epitaxy. On the reprepared p(1x1) surface, resonant photoemission of the valence band shows a 20-fold enhancement of the Mn 3d contribution at the L-3 edge. The difference spectrum is similar to our previously obtained resonant photoemission at the Mn M edge, in particular a strong satellite appears and no clear Fermi edge ruling out strong Mn 3d weight at the valence-band maximum. The x-ray absorption lineshape differs from previous publications. Our calculation based on a configuration-interaction cluster model reproduces the x-ray absorption and the L-3 on-resonance photoemission spectrum for model parameters Delta, U-dd, and (pdsigma) consistent with our previous work and shows the same spectral shape on and off resonance thus rendering resonant photoemission measured at the L-3 edge representative of the Mn 3d contribution. At the same time, the results are more bulk sensitive due to a probing depth about twice as large as for photoemission at the Mn M edge. The confirmation of our previous results obtained at the M edge calls recent photoemission results into question which report the absence of the satellite and good agreement with local-density theory Y1 - 2004 ER - TY - JOUR A1 - Shikin, A. M. A1 - Varykhalov, Andrei A1 - Prudnikova, G. V. A1 - Adamchuk, V. K. A1 - Gudat, Wolfgang A1 - Rader, Oliver T1 - Photoemission from stepped W(110) : Initial or final state effect? N2 - The electronic structure of the (110)-oriented terraces of stepped W(331) and W(551) is compared to the one of flat W(110) using angle-resolved photoemission. We identify a surface-localized state which develops perpendicular to the steps into a repeated band structure with the periodicity of the step superlattices. It is shown that a final-state diffraction process rather than an initial-state superlattice effect is the origin of the observed behavior and why it does not affect the entire band structure Y1 - 2004 SN - 0031-9007 ER - TY - JOUR A1 - Rader, Oliver A1 - Fauth, K. A1 - Gould, C. A1 - Ruster, C. A1 - Schott, G. M. A1 - Schmidt, G. A1 - Brunner, K. A1 - Molenkamp, Laurens W. A1 - Schutz, G. A1 - Kronast, F. A1 - Durr, H. A. A1 - Eberhardt, W. A1 - Gudat, Wolfgang T1 - Identification of extrinsic Mn contributions in Ga1-xMnxAs by field-dependent magnetic circular X-ray dichroism N2 - We combine sensitivity to atomic number, chemical shifts, probing depth, and magnetic order in a field- dependent magnetic circular X-ray dichroism study at the Mn L-edge of the diluted ferromagnetic semiconductor Ga1-xMnxAs and observe different Mn constituents: ferromagnetic Mn with an n(d) > 5 lineshape and paramagnetic Mn with distinct n(d) = 5 lineshape. The paramagnetic Mn is assigned to interstitials with surface segregation tendency. (c) 2005 Elsevier B.V. All rights reserved Y1 - 2005 SN - 0368-2048 ER - TY - THES A1 - Rader, Oliver T1 - Electron quantization and localization in metal films and nanostructures N2 - Es ist seit einigen Jahren bekannt, dass Elektronen unter bestimmten Bedingungen in dünne Filme eingeschlossen werden können, selbst wenn diese Filme aus Metall bestehen und auf Metall-Substrat aufgebracht werden. In Photoelektronenspektren zeigen diese Filme charakteristische diskrete Energieniveaus, und es hat sich herausgestellt, dass sie zu großen, technisch nutzbaren Effekten führen können, wie der oszillatorischen magnetischen Kopplung in modernen Festplatten-Leseköpfen. In dieser Arbeit wird untersucht, inwieweit die der Quantisierung in zweidimensionalen Filmen zu Grunde liegenden Konzepte auf niedrigere Dimensionalität übertragbar sind. Das bedeutet, dass schrittweise von zweidimensionalen Filmen auf eindimensionale Nanostrukturen übergegangen wird. Diese Nanostrukturen sind zum einen die Terrassen auf atomar gestuften Oberflächen, aber auch Atomketten, die auf diese Terrassen aufgebracht werden, bis hin zu einer vollständigen Bedeckung mit atomar dünnen Nanostreifen. Daneben werden Selbstorganisationseffekte ausgenutzt, um zu perfekt eindimensionalen Atomanordnungen auf Oberflächen zu gelangen. Die winkelaufgelöste Photoemission ist als Untersuchungsmethode deshalb so geeignet, weil sie das Verhalten der Elektronen in diesen Nanostrukturen in Abhängigkeit von der Raumrichtung zeigt, und unterscheidet sich darin beispielsweise von der Rastertunnelmikroskopie. Damit ist es möglich, deutliche und manchmal überraschend große Effekte der eindimensionalen Quantisierung bei verschiedenen exemplarischen Systemen zum Teil erstmals nachzuweisen. Die für zweidimensionale Filme wesentliche Rolle von Bandlücken im Substrat wird für Nanostrukturen bestätigt. Hinzu kommt jedoch eine bei zweidimensionalen Filmen nicht vorhandene Ambivalenz zwischen räumlicher Einschränkung der Elektronen in den Nanostrukturen und dem Effekt eines Übergitters aus Nanostrukturen sowie zwischen Effekten des Elektronenverhaltens in der Probe und solchen des Messprozesses. Letztere sind sehr groß und können die Photoemissionsspektren dominieren. Abschließend wird der Effekt der verminderten Dimensionalität speziell für die d-Elektronen von Mangan untersucht, die zusätzlich starken Wechselwirkungseffekten unterliegen. Auch hierbei treten überraschende Ergebnisse zu Tage. N2 - It has been known for several years that under certain conditions electrons can be confined within thin layers even if these layers consist of metal and are supported by a metal substrate. In photoelectron spectra, these layers show characteristic discrete energy levels and it has turned out that these lead to large effects like the oscillatory magnetic coupling technically exploited in modern hard disk reading heads. The current work asks in how far the concepts underlying quantization in two-dimensional films can be transferred to lower dimensionality. This problem is approached by a stepwise transition from two-dimensional layers to one-dimensional nanostructures. On the one hand, these nanostructures are represented by terraces on atomically stepped surfaces, on the other hand by atom chains which are deposited onto these terraces up to complete coverage by atomically thin nanostripes. Furthermore, self organization effects are used in order to arrive at perfectly one-dimensional atomic arrangements at surfaces. Angle-resolved photoemission is particularly suited as method of investigation because is reveals the behavior of the electrons in these nanostructures in dependence of the spacial direction which distinguishes it from, e. g., scanning tunneling microscopy. With this method intense and at times surprisingly large effects of one-dimensional quantization are observed for various exemplary systems, partly for the first time. The essential role of bandgaps in the substrate known from two-dimensional systems is confirmed for nanostructures. In addition, we reveal an ambiguity without precedent in two-dimensional layers between spacial confinement of electrons on the one side and superlattice effects on the other side as well as between effects caused by the sample and by the measurement process. The latter effects are huge and can dominate the photoelectron spectra. Finally, the effects of reduced dimensionality are studied in particular for the d electrons of manganese which are additionally affected by strong correlation effects. Surprising results are also obtained here. ---------------------------- Die Links zur jeweiligen Source der im Appendix beigefügten Veröffentlichungen befinden sich auf Seite 83 des Volltextes. T2 - Electron quantization and localization in metal films and nanostructures KW - elektronische Struktur KW - elektronische Eigenschaften KW - Dispersion KW - reduzierte Dimensionalität KW - Oberfläche KW - Nanostruktur KW - Quantendraht KW - Terrasse ... KW - electronic structure KW - electronic properties KW - dispersion KW - reduced dimensionality KW - 1D KW - 2D KW - surface KW - nanostructure KW - quantum wire KW - terrace ... Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-0001912 ER - TY - JOUR A1 - Varykhalov, Andrei A1 - Rader, Oliver A1 - Gudat, Wolfgang T1 - Structure and quantum-size effects in a surface carbide : W(110)/C-R(15 X 3) N2 - Results of the combined investigation of atomic and electronic structure of the W(110)/C-R(15x3) surface carbide are reported. A variety of experimental techniques has been involved such as scanning tunneling microscopy (STM), low-energy electron diffraction, x-ray photoelectron spectroscopy, and angle-resolved photoemission (ARPES). Distance-dependent STM measurements show a nontrivial geometrical behavior in the topography data, demonstrating five different patterns representing the superstructure at different values of the tip-surface separation. Atomic resolution was achieved at lower tunneling gap resistance. An unexpected spatial asymmetry in the distribution of the local density of states across the surface unit cell has been observed as well. Photoelectron spectroscopy of C1s and W4f core levels clarifies the nature of the chemical bonding in the system. The band mapping with ARPES provides information on the wave- vector dependence of the electronic states. Notable quantum size and superlattice effects were discovered in the dispersion of the valence-band states. The experimental data suggests an apparent one-dimensional character of the electronic structure. Lateral quantization and umklapp scattering are proposed as explanation. Finally, based on photoemission and STM measurements, an improved crystallographic model of the tungsten surface carbide is introduced Y1 - 2005 SN - 1098-0121 ER - TY - JOUR A1 - Varykhalov, Andrei A1 - Shikin, A. M. A1 - Gudat, Wolfgang A1 - Moras, P. A1 - Grazioli, C. A1 - Carbone, C. A1 - Rader, Oliver T1 - Probing the ground state electronic structure of a correlated electron system by quantum well states: Ag/ Ni(111) N2 - The ground state electronic properties of the strongly correlated transition metal Ni are usually not accessible from the excitation spectra measured in photoelectron spectroscopy. We show that the bottom of the Ni d band along [111] can be probed through the energy dependence of the phase of quantum-well states in Ag/Ni(111). Our model description of the quantum-well energies measured by angle-resolved photoemission determines the bottom of the Lambda(1) d band of Ni as 2.6 eV, in full agreement with standard local density theory and at variance with the values of 1.7-1.8 eV from direct angle-resolved photoemission experiments of Ni Y1 - 2005 SN - 0031-9007 ER - TY - JOUR A1 - Varykhalov, Andrei A1 - Gudat, Wolfgang A1 - Adamchuk, V. K. A1 - Rader, Oliver T1 - Magic numbers in two-dimensional self-organization of C-60 molecules N2 - Employing the chemically passive carbon reconstruction W(110)/C-R(15x3) as substrate for deposition of C-60 molecules, we have discovered by scanning tunneling microscopy two-dimensional self-assembly of fullerenes into uniform molecular nanoclusters with "magic" numbers. Our photoemission measurements determine van der Waals forces as the dominating interaction in this self-organizing two-dimensional molecular gas. Based on this, a theoretical determination of the cluster structures in the framework of the Girifalco model gives perfect agreement with the experiment Y1 - 2006 UR - http://prb.aps.org/pdf/PRB/v73/i24/e241404 U6 - https://doi.org/10.1103/Physrevb.73.241404 ER - TY - JOUR A1 - Krivenkov, Maxim A1 - Golias, Evangelos A1 - Marchenko, Dmitry A1 - Sanchez-Barriga, Jaime A1 - Bihlmayer, Gustav A1 - Rader, Oliver A1 - Varykhalov, Andrei T1 - Nanostructural origin of giant Rashba effect in intercalated graphene JF - 2D Materials N2 - To enhance the spin-orbit interaction in graphene by a proximity effect without compromising the quasi-free-standing dispersion of the Dirac cones means balancing the opposing demands for strong and weak graphene-substrate interaction. So far, only the intercalation of Au under graphene/Ni(111) has proven successful, which was unexpected since graphene prefers a large separation (similar to 3.3 angstrom) from a Au monolayer in equilibrium. Here, we investigate this system and find the solution in a nanoscale effect. We reveal that the Au largely intercalates as nanoclusters. Our density functional theory calculations show that the graphene is periodically stapled to the Ni substrate, and this attraction presses graphene and Au nanoclusters together. This, in turn, causes a Rashba effect of the giant magnitude observed in experiment. Our findings show that nanopatterning of the substrate can be efficiently used for engineering of spin-orbit effects in graphene. KW - quasi-free-standing graphene KW - Ni(111) KW - gold intercalation KW - spin-orbit interaction KW - nanoclusters KW - STM KW - DFT Y1 - 2017 U6 - https://doi.org/10.1088/2053-1583/aa7ad8 SN - 2053-1583 VL - 4 IS - 3 PB - IOP Publ. Ltd. CY - Bristol ER - TY - GEN A1 - Hlawenka, Peter A1 - Siemensmeyer, Konrad A1 - Weschke, Eugen A1 - Varykhalov, Andrei A1 - Sánchez-Barriga, Jaime A1 - Shitsevalova, Natalya Y. A1 - Dukhnenko, A.V. A1 - Filipov, V. B. A1 - Gabáni, Slavomir A1 - Flachbart, Karol A1 - Rader, Oliver A1 - Rienks, Emile D. L. T1 - Samarium hexaboride is a trivial surface conductor T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - SmB6 is predicted to be the first member of the intersection of topological insulators and Kondo insulators, strongly correlated materials in which the Fermi level lies in the gap of a many-body resonance that forms by hybridization between localized and itinerant states. While robust, surface-only conductivity at low temperature and the observation of surface states at the expected high symmetry points appear to confirm this prediction, we find both surface states at the (100) surface to be topologically trivial. We find the (Gamma) over bar state to appear Rashba split and explain the prominent (X) over bar state by a surface shift of the many-body resonance. We propose that the latter mechanism, which applies to several crystal terminations, can explain the unusual surface conductivity. While additional, as yet unobserved topological surface states cannot be excluded, our results show that a firm connection between the two material classes is still outstanding. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 612 KW - topological Kondo-insulator KW - SmB 6 KW - photoemission KW - states KW - gap Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-424213 SN - 1866-8372 IS - 612 ER - TY - JOUR A1 - Hlawenka, Peter A1 - Siemensmeyer, Konrad A1 - Weschke, Eugen A1 - Varykhalov, Andrei A1 - Sanchez-Barriga, Jaime A1 - Shitsevalova, Natalya Y. A1 - Dukhnenko, A. V. A1 - Filipov, V. B. A1 - Gabani, Slavomir A1 - Flachbart, Karol A1 - Rader, Oliver A1 - Rienks, Emile D. L. T1 - Samarium hexaboride is a trivial surface conductor JF - Nature Communications N2 - SmB6 is predicted to be the first member of the intersection of topological insulators and Kondo insulators, strongly correlated materials in which the Fermi level lies in the gap of a many-body resonance that forms by hybridization between localized and itinerant states. While robust, surface-only conductivity at low temperature and the observation of surface states at the expected high symmetry points appear to confirm this prediction, we find both surface states at the (100) surface to be topologically trivial. We find the (Gamma) over bar state to appear Rashba split and explain the prominent (X) over bar state by a surface shift of the many-body resonance. We propose that the latter mechanism, which applies to several crystal terminations, can explain the unusual surface conductivity. While additional, as yet unobserved topological surface states cannot be excluded, our results show that a firm connection between the two material classes is still outstanding. Y1 - 2018 U6 - https://doi.org/10.1038/s41467-018-02908-7 SN - 2041-1723 VL - 9 PB - Nature Publ. Group CY - London ER -