TY - JOUR A1 - Schimka, Selina A1 - Santer, Svetlana A1 - Mujkic-Ninnemann, Nina M. A1 - Bleger, David A1 - Hartmann, Laura A1 - Wehle, Marko A1 - Lipowsky, Reinhard A1 - Santer, Mark T1 - Photosensitive Peptidomimetic for Light-Controlled, Reversible DNA Compaction JF - Biomacromolecules : an interdisciplinary journal focused at the interface of polymer science and the biological sciences N2 - Light-induced DNA compaction as part of nonviral gene delivery was investigated intensively in the past years, although the bridging between the artificial light switchable compacting.agents and biodompatible light insensitive compacting agents was not achieved until now. In this paper, we report on light-induced compaction and decompaction of DNA molecules in the presence of a new typeof agent, a multivalent cationic peptidomimetic molecule containing a photosensitive Azo-group as a branch (Azo-PM). Az-o-PM is synthesized using a solid-phase procedure during Which anrazoberizene unit is attached as a side chain to an Oligo(arnidoamine) backbone. We shoW, that within a-certain Tange,of concentrations and under illumination with light of appropriate-wavelengths, these cationic Molecules induce reversible DNA compaction/decompaction by photo-isomerization of the incorporated azobenzene unit between a hydrophobic trans- and 4 hydrophilic cis-conformation, as characterized by dynamic light scattering and AFM measurements. In contrast to other molecular Species used for invasive DNA compaction, such as-widely used azobenzene containing cationic surfactant (Azo-TAR, C-4-Azo-OCX-TMAB), the presented peptidomimetic agent appears to lead to different compleication/compaction mechanisms., An investigation of Ato-PM in close proximity to a DNA segment by means of a molecular dynamics simulation sustains a picture in which Azo-PM acts as a multivalent counterion, with its rather large cationic oligo(amidoamine) backbone dominating the interaction with the double helix, fine-tuned or assisted by the presence" andisomerization state of the Azo-moiety. However, due to its peptidomimetic backbone, Azo-PM should be far less toxic than photosensitive surfactants and might represent a starting point for a conscious design of photoswitchable, biocompatible vectors for gene delivery. Y1 - 2016 U6 - https://doi.org/10.1021/acs.biomac.6b00052 SN - 1525-7797 SN - 1526-4602 VL - 17 SP - 1959 EP - 1968 PB - American Chemical Society CY - Washington ER -