TY - JOUR A1 - Kröner, Dominik A1 - Gaebel, Tina T1 - Circular Dichroism in Mass Spectrometry: Quantum Chemical Investigations for the Differences between (R)-3-Methylcyclopentanone and Its Cation JF - The journal of physical chemistry : A, Molecules, spectroscopy, kinetics, environment & general theory N2 - In mass spectrometry enantiomers can be distinguished by multiphoton ionization employing circular polarized laser pulses. The circular dichroism (CD) is detected from the normalized difference in the ion yield after excitation with light of opposite handedness. While there are cases in which fragment and parent ions exhibit the same sign of the CD in the ion yield, several experiments show that they might also differ in sign and magnitude. Supported by experimental observations it has been proposed that the parent ion, once it has been formed, is further excited by the laser, which may result in a change of the CD in the ion yield of the formed fragments compared to the parent ion. To gain a deeper insight in possible excitation pathways we calculated and compared the electronic CD absorption spectra of neutral and cationic (R)-3-methylcyclopentanone, applying density functional theory. In addition, electron wavepacket dynamics were used to compare the CD of one- and two-photon transitions. Our results support the proposed subsequent excitation of the parent ion as a possible origin of the difference of the CD in the ion yield between parent ion and fragments. Y1 - 2015 U6 - https://doi.org/10.1021/acs.jpca.5b05247 SN - 1089-5639 VL - 119 IS - 34 SP - 9167 EP - 9177 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Kröner, Dominik T1 - Laser-driven electron dynamics for circular dichroism in mass spectrometry BT - from one-photon excitations to multiphoton ionization JF - Physical chemistry, chemical physics : PCCP ; a journal of European Chemical Societies N2 - The distinction of enantiomers is a key aspect of chemical analysis. In mass spectrometry the distinction of enantiomers has been achieved by ionizing the sample with circularly polarized laser pulses and comparing the ion yields for light of opposite handedness. While resonant excitation conditions are expected to be most efficient, they are not required for the detection of a circular dichroism (CD) in the ion yield. However, the prediction of the size and sign of the circular dichroism becomes challenging if non-resonant multiphoton excitations are used to ionize the sample. Employing femtosecond laser pulses to drive electron wavepacket dynamics based on ab initio calculations, we attempt to reveal underlying mechanisms that determine the CD under non-resonant excitation conditions. Simulations were done for (R)-1,2-propylene oxide, using time-dependent configuration interaction singles with perturbative doubles (TD-CIS(D)) and the aug-cc-pVTZ basis set. Interactions between the electric field and the electric dipole and quadrupole as well as between the magnetic field and the magnetic dipole were explicitly accounted for. The ion yield was determined by treating states above the ionization potential as either stationary or non-stationary with energy-dependent lifetimes based on an approved heuristic approach. The observed population dynamics do not allow for a simple interpretation, because of highly non-linear interactions. Still, the various transition pathways are governed by resonant enantiospecific n-photon excitation, with preferably high transition dipole moments, which eventually dominate the CD in the ionized population. Y1 - 2015 U6 - https://doi.org/10.1039/C5CP02193F SN - 1463-9076 SN - 1463-9084 VL - 29 IS - 17 SP - 19643 EP - 19655 PB - The Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Ehlert, Christopher A1 - Kröner, Dominik A1 - Saalfrank, Peter T1 - A combined quantum chemical/molecular dynamics study of X-ray photoelectron spectra of polyvinyl alcohol using oligomer models JF - Journal of electron spectroscopy and related phenomena : the international journal on theoretical and experimental aspects of electron spectroscopy N2 - X-ray photoelectron spectroscopy (XPS) is a powerful tool for probing the local chemical environment of atoms near surfaces. When applied to soft matter, such as polymers, XPS spectra are frequently shifted and broadened due to thermal atom motion and by interchain interactions. We present a combined quantum mechanical QM/molecular dynamics (MD) simulation of X-ray photoelectron spectra of polyvinyl alcohol (PVA) using oligomer models in order to account for and quantify these effects on the XPS (C1s) signal. In our study, molecular dynamics at finite temperature were performed with a classical forcefield and by ab initio MD (AIMD) using the Car-Parrinello method. Snapshots along, the trajectories represent possible conformers and/or neighbouring environments, with different C1s ionization potentials for individual C atoms leading to broadened XPS peaks. The latter are determined by Delta-Kohn Sham calculations. We also examine the experimental practice of gauging XPS (C1s) signals of alkylic C-atoms in C-containing polymers to the C1s signal of polyethylene. We find that (i) the experimental XPS (C1s) spectra of PVA (position and width) can be roughly represented by single-strand models, (ii) interchain interactions lead to red-shifts of the XPS peaks by about 0.6 eV, and (iii) AIMD simulations match the findings from classical MD semi-quantitatively. Further, (iv) the gauging procedure of XPS (C1s) signals to the values of PE, introduces errors of about 0.5 eV. (C) 2014 Elsevier B.V. All rights reserved. KW - Simulation of polymer XPS KW - Delta-Kohn Sham method KW - Thermal broadening effects KW - Interchain interactions KW - Classical MD KW - Poly vinyl alcohol Y1 - 2015 U6 - https://doi.org/10.1016/j.elspec.2014.12.007 SN - 0368-2048 SN - 1873-2526 VL - 199 SP - 38 EP - 45 PB - Elsevier CY - Amsterdam ER -