TY - JOUR A1 - Merz, Bruno A1 - Vorogushyn, Sergiy A1 - Lall, Upmanu A1 - Viglione, Alberto A1 - Blöschl, Günter T1 - Charting unknown waters-On the role of surprise in flood risk assessment and management JF - Water resources research N2 - Unexpected incidents, failures, and disasters are abundant in the history of flooding events. In this paper, we introduce the metaphors of terra incognita and terra maligna to illustrate unknown and wicked flood situations, respectively. We argue that surprise is a neglected element in flood risk assessment and management. Two sources of surprise are identified: (1) the complexity of flood risk systems, represented by nonlinearities, interdependencies, and nonstationarities and (2) cognitive biases in human perception and decision making. Flood risk assessment and management are particularly prone to cognitive biases due to the rarity and uniqueness of extremes, and the nature of human risk perception. We reflect on possible approaches to better understanding and reducing the potential for surprise and its adverse consequences which may be supported by conceptually charting maps that separate terra incognita from terra cognita, and terra maligna from terra benigna. We conclude that flood risk assessment and management should account for the potential for surprise and devastating consequences which will require a shift in thinking. Y1 - 2015 U6 - https://doi.org/10.1002/2015WR017464 SN - 0043-1397 SN - 1944-7973 VL - 51 IS - 8 SP - 6399 EP - 6416 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Di Baldassarre, Giuliano A1 - Kreibich, Heidi A1 - Vorogushyn, Sergiy A1 - Aerts, Jeroen A1 - Arnbjerg-Nielsen, Karsten A1 - Barendrecht, Marlies A1 - Bates, Paul A1 - Borga, Marco A1 - Botzen, Wouter A1 - Bubeck, Philip A1 - De Marchi, Bruna A1 - Llasat, Carmen Maria A1 - Mazzoleni, Maurizio A1 - Molinari, Daniela A1 - Mondino, Elena A1 - Mard, Johanna A1 - Petrucci, Olga A1 - Scolobig, Anna A1 - Viglione, Alberto A1 - Ward, Philip J. T1 - Hess Opinions: An interdisciplinary research agenda to explore the unintended consequences of structural flood protection JF - Hydrology and earth system sciences : HESS N2 - One common approach to cope with floods is the implementation of structural flood protection measures, such as levees or flood-control reservoirs, which substantially reduce the probability of flooding at the time of implementation. Numerous scholars have problematized this approach. They have shown that increasing the levels of flood protection can attract more settlements and high-value assets in the areas protected by the new measures. Other studies have explored how structural measures can generate a sense of complacency, which can act to reduce preparedness. These paradoxical risk changes have been described as "levee effect", "safe development paradox" or "safety dilemma". In this commentary, we briefly review this phenomenon by critically analysing the intended benefits and unintended effects of structural flood protection, and then we propose an interdisciplinary research agenda to uncover these paradoxical dynamics of risk. Y1 - 2018 U6 - https://doi.org/10.5194/hess-22-5629-2018 SN - 1027-5606 SN - 1607-7938 VL - 22 IS - 11 SP - 5629 EP - 5637 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Tarasova, Larisa A1 - Merz, Ralf A1 - Kiss, Andrea A1 - Basso, Stefano A1 - Blöchl, Günter A1 - Merz, Bruno A1 - Viglione, Alberto A1 - Plötner, Stefan A1 - Guse, Björn A1 - Schumann, Andreas A1 - Fischer, Svenja A1 - Ahrens, Bodo A1 - Anwar, Faizan A1 - Bárdossy, András A1 - Bühler, Philipp A1 - Haberlandt, Uwe A1 - Kreibich, Heidi A1 - Krug, Amelie A1 - Lun, David A1 - Müller-Thomy, Hannes A1 - Pidoto, Ross A1 - Primo, Cristina A1 - Seidel, Jochen A1 - Vorogushyn, Sergiy A1 - Wietzke, Luzie T1 - Causative classification of river flood events JF - Wiley Interdisciplinary Reviews : Water N2 - A wide variety of processes controls the time of occurrence, duration, extent, and severity of river floods. Classifying flood events by their causative processes may assist in enhancing the accuracy of local and regional flood frequency estimates and support the detection and interpretation of any changes in flood occurrence and magnitudes. This paper provides a critical review of existing causative classifications of instrumental and preinstrumental series of flood events, discusses their validity and applications, and identifies opportunities for moving toward more comprehensive approaches. So far no unified definition of causative mechanisms of flood events exists. Existing frameworks for classification of instrumental and preinstrumental series of flood events adopt different perspectives: hydroclimatic (large-scale circulation patterns and atmospheric state at the time of the event), hydrological (catchment scale precipitation patterns and antecedent catchment state), and hydrograph-based (indirectly considering generating mechanisms through their effects on hydrograph characteristics). All of these approaches intend to capture the flood generating mechanisms and are useful for characterizing the flood processes at various spatial and temporal scales. However, uncertainty analyses with respect to indicators, classification methods, and data to assess the robustness of the classification are rarely performed which limits the transferability across different geographic regions. It is argued that more rigorous testing is needed. There are opportunities for extending classification methods to include indicators of space-time dynamics of rainfall, antecedent wetness, and routing effects, which will make the classification schemes even more useful for understanding and estimating floods. This article is categorized under: Science of Water > Water Extremes Science of Water > Hydrological Processes Science of Water > Methods KW - flood genesis KW - flood mechanisms KW - flood typology KW - historical floods KW - hydroclimatology of floods Y1 - 2019 U6 - https://doi.org/10.1002/wat2.1353 SN - 2049-1948 VL - 6 IS - 4 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Barendrecht, Marlies H. A1 - Viglione, Alberto A1 - Kreibich, Heidi A1 - Merz, Bruno A1 - Vorogushyn, Sergiy A1 - Blöschl, G. T1 - The Value of Empirical Data for Estimating the Parameters of a Sociohydrological Flood Risk Model JF - Water resources research N2 - In this paper, empirical data are used to estimate the parameters of a sociohydrological flood risk model. The proposed model, which describes the interactions between floods, settlement density, awareness, preparedness, and flood loss, is based on the literature. Data for the case study of Dresden, Germany, over a period of 200years, are used to estimate the model parameters through Bayesian inference. The credibility bounds of their estimates are small, even though the data are rather uncertain. A sensitivity analysis is performed to examine the value of the different data sources in estimating the model parameters. In general, the estimated parameters are less biased when using data at the end of the modeled period. Data about flood awareness are the most important to correctly estimate the parameters of this model and to correctly model the system dynamics. Using more data for other variables cannot compensate for the absence of awareness data. More generally, the absence of data mostly affects the estimation of the parameters that are directly related to the variable for which data are missing. This paper demonstrates that combining sociohydrological modeling and empirical data gives additional insights into the sociohydrological system, such as quantifying the forgetfulness of the society, which would otherwise not be easily achieved by sociohydrological models without data or by standard statistical analysis of empirical data. Y1 - 2019 U6 - https://doi.org/10.1029/2018WR024128 SN - 0043-1397 SN - 1944-7973 VL - 55 IS - 2 SP - 1312 EP - 1336 PB - American Geophysical Union CY - Washington ER -