TY - JOUR A1 - Srama, Ralf A1 - Ahrens, Thomas J. A1 - Altobelli, Nicolas A1 - Auer, S. A1 - Bradley, J. G. A1 - Burton, M. A1 - Dikarev, V. V. A1 - Economou, T. A1 - Fechtig, Hugo A1 - Görlich, M. A1 - Grande, M. A1 - Graps, Amara A1 - Grün, Eberhard A1 - Havnes, Ove A1 - Helfert, Stefan A1 - Horanyi, Mihaly A1 - Igenbergs, E. A1 - Jessberger, Elmar K. A1 - Johnson, T. V. A1 - Kempf, Sascha A1 - Krivov, Alexander v. A1 - Krüger, Harald A1 - Mocker-Ahlreep, Anna A1 - Moragas-Klostermeyer, Georg A1 - Lamy, Philippe A1 - Landgraf, Markus A1 - Linkert, Dietmar A1 - Linkert, G. A1 - Lura, F. A1 - McDonnell, J. A. M. A1 - Moehlmann, Dirk A1 - Morfill, Gregory E. A1 - Muller, M. A1 - Roy, M. A1 - Schafer, G. A1 - Schlotzhauer, G. A1 - Schwehm, Gerhard H. A1 - Spahn, Frank A1 - Stübig, M. A1 - Svestka, Jiri A1 - Tschernjawski, V T1 - The Cassini Cosmic Dust Analyzer N2 - The Cassini-Huygens Cosmic Dust Analyzer (CDA) is intended to provide direct observations of dust grains with masses between 10(-19) and 10(-9) kg in interplanetary space and in the jovian and saturnian systems, to investigate their physical, chemical and dynamical properties as functions of the distances to the Sun, to Jupiter and to Saturn and its satellites and rings, to study their interaction with the saturnian rings, satellites and magnetosphere. Chemical composition of interplanetary meteoroids will be compared with asteroidal and cometary dust, as well as with Saturn dust, ejecta from rings and satellites. Ring and satellites phenomena which might be effects of meteoroid impacts will be compared with the interplanetary dust environment. Electrical charges of particulate matter in the magnetosphere and its consequences will be studied, e.g. the effects of the ambient plasma and the magnetic held on the trajectories of dust particles as well as fragmentation of particles due to electrostatic disruption. The investigation will be performed with an instrument that measures the mass, composition, electric charge, speed, and flight direction of individual dust particles. It is a highly reliable and versatile instrument with a mass sensitivity 106 times higher than that of the Pioneer 10 and I I dust detectors which measured dust in the saturnian system. The Cosmic Dust Analyzer has significant inheritance from former space instrumentation developed for the VEGA, Giotto, Galileo, and Ulysses missions. It will reliably measure impacts from as low as I impact per month up to 104 impacts per second. The instrument weighs 17 kg and consumes 12 W, the integrated time-of-flight mass spectrometer has a mass resolution of up to 50. The nominal data transmission rate is 524 bits/s and varies between 50 and 4192 bps Y1 - 2004 SN - 0038-6308 ER - TY - JOUR A1 - Spahn, Frank A1 - Schmidt, Jürgen A1 - Albers, Nicole A1 - Hörning, Marcel A1 - Makuch, Martin A1 - Seiß, Martin A1 - Kempf, Sascha A1 - Srama, Ralf A1 - Dikarev, Valeri A1 - Helfert, Stefan A1 - Moragas-Klostermeyer, Georg A1 - Krivov, Alexander V. A1 - Sremcevic, Miodrag A1 - Tuzzolino, Anthony J. A1 - Economou, Thanasis A1 - Grün, Eberhard T1 - Cassini dust measurements at Enceladus and implications for the origin of the E ring Y1 - 2006 UR - http://www.sciencemag.org/content/311/5766/1416.full U6 - https://doi.org/10.1126/science.1121375 ER - TY - JOUR A1 - Srama, Ralf A1 - Kempf, S. A1 - Moragas-Klostermeyer, Georg A1 - Helfert, S. A1 - Ahrens, T. J. A1 - Altobelli, N. A1 - Auer, S. A1 - Beckmann, U. A1 - Bradley, J. G. A1 - Burton, M. A1 - Dikarev, V. V. A1 - Economou, T. A1 - Fechtig, H. A1 - Green, S. F. A1 - Grande, M. A1 - Havnes, O. A1 - Hillierf, J.K. A1 - Horanyii, M. A1 - Igenbergsj, E. A1 - Jessberger, E. K. A1 - Johnson, T. V. A1 - Krüger, H. A1 - Matt, G. A1 - McBride, N. A1 - Mocker, A. A1 - Lamy, P. A1 - Linkert, D. A1 - Linkert, G. A1 - Lura, F. A1 - McDonnell, J.A.M. A1 - Möhlmann, D. A1 - Morfill, G. E. A1 - Postberg, F. A1 - Roy, M. A1 - Schwehm, G.H. A1 - Spahn, Frank A1 - Svestka, J. A1 - Tschernjawski, V. A1 - Tuzzolino, A. J. A1 - Wäsch, R. A1 - Grün, E. T1 - In situ dust measurements in the inner Saturnian system JF - Planetary and space science N2 - In July 2004 the Cassini–Huygens mission reached the Saturnian system and started its orbital tour. A total of 75 orbits will be carried out during the primary mission until August 2008. In these four years Cassini crosses the ring plane 150 times and spends approx. 400 h within Titan's orbit. The Cosmic Dust Analyser (CDA) onboard Cassini characterises the dust environment with its extended E ring and embedded moons. Here, we focus on the CDA results of the first year and we present the Dust Analyser (DA) data within Titan's orbit. This paper does investigate High Rate Detector data and dust composition measurements. The authors focus on the analysis of impact rates, which were strongly variable primarily due to changes of the spacecraft pointing. An overview is given about the ring plane crossings and the DA counter measurements. The DA dust impact rates are compared with the DA boresight configuration around all ring plane crossings between June 2004 and July 2005. Dust impacts were registered at altitudes as high as 100 000 km above the ring plane at distances from Saturn between 4 and 10 Saturn radii. In those regions the dust density of particles bigger than 0.5 can reach values of 0.001m-3. KW - Cassini KW - dust KW - CDA KW - E-ring KW - water ice Y1 - 2006 U6 - https://doi.org/10.1016/j.pss.2006.05.021 SN - 0032-0633 VL - 54 IS - 9-10 SP - 967 EP - 987 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Srama, Ralf A1 - Krueger, H. A1 - Yamaguchi, T. A1 - Stephan, T. A1 - Burchell, M. A1 - Kearsley, A. T. A1 - Sterken, V. A1 - Postberg, F. A1 - Kempf, S. A1 - Grün, Eberhard A1 - Altobelli, Nicolas A1 - Ehrenfreund, P. A1 - Dikarev, V. A1 - Horanyi, M. A1 - Sternovsky, Zoltan A1 - Carpenter, J. D. A1 - Westphal, A. A1 - Gainsforth, Z. A1 - Krabbe, A. A1 - Agarwal, Jessica A1 - Yano, H. A1 - Blum, J. A1 - Henkel, H. A1 - Hillier, J. A1 - Hoppe, P. A1 - Trieloff, M. A1 - Hsu, S. A1 - Mocker, A. A1 - Fiege, K. A1 - Green, S. F. A1 - Bischoff, A. A1 - Esposito, F. A1 - Laufer, R. A1 - Hyde, T. W. A1 - Herdrich, G. A1 - Fasoulas, S. A1 - Jaeckel, A. A1 - Jones, G. A1 - Jenniskens, P. A1 - Khalisi, E. A1 - Moragas-Klostermeyer, Georg A1 - Spahn, Frank A1 - Keller, H. U. A1 - Frisch, P. A1 - Levasseur-Regourd, A. C. A1 - Pailer, N. A1 - Altwegg, K. A1 - Engrand, C. A1 - Auer, S. A1 - Silen, J. A1 - Sasaki, S. A1 - Kobayashi, M. A1 - Schmidt, J. A1 - Kissel, J. A1 - Marty, B. A1 - Michel, P. A1 - Palumbo, P. A1 - Vaisberg, O. A1 - Baggaley, J. A1 - Rotundi, A. A1 - Roeser, H. P. T1 - SARIM PLUS-sample return of comet 67P/CG and of interstellar matter JF - EXPERIMENTAL ASTRONOMY N2 - The Stardust mission returned cometary, interplanetary and (probably) interstellar dust in 2006 to Earth that have been analysed in Earth laboratories worldwide. Results of this mission have changed our view and knowledge on the early solar nebula. The Rosetta mission is on its way to land on comet 67P/Churyumov-Gerasimenko and will investigate for the first time in great detail the comet nucleus and its environment starting in 2014. Additional astronomy and planetary space missions will further contribute to our understanding of dust generation, evolution and destruction in interstellar and interplanetary space and provide constraints on solar system formation and processes that led to the origin of life on Earth. One of these missions, SARIM-PLUS, will provide a unique perspective by measuring interplanetary and interstellar dust with high accuracy and sensitivity in our inner solar system between 1 and 2 AU. SARIM-PLUS employs latest in-situ techniques for a full characterisation of individual micrometeoroids (flux, mass, charge, trajectory, composition()) and collects and returns these samples to Earth for a detailed analysis. The opportunity to visit again the target comet of the Rosetta mission 67P/Churyumov-Gerasimeenternko, and to investigate its dusty environment six years after Rosetta with complementary methods is unique and strongly enhances and supports the scientific exploration of this target and the entire Rosetta mission. Launch opportunities are in 2020 with a backup window starting early 2026. The comet encounter occurs in September 2021 and the reentry takes place in early 2024. An encounter speed of 6 km/s ensures comparable results to the Stardust mission. KW - Interstellar dust KW - Cometary dust KW - Churyumov Gerasimenko KW - Interplanetary dust KW - IMF KW - Cosmic vision KW - Sample return KW - Dust collector KW - Mass spectrometry Y1 - 2012 U6 - https://doi.org/10.1007/s10686-011-9285-7 SN - 0922-6435 SN - 1572-9508 VL - 33 IS - 2-3 SP - 723 EP - 751 PB - SPRINGER CY - DORDRECHT ER - TY - JOUR A1 - Arridge, Christopher S. A1 - Achilleos, N. A1 - Agarwal, Jessica A1 - Agnor, C. B. A1 - Ambrosi, R. A1 - Andre, N. A1 - Badman, S. V. A1 - Baines, K. A1 - Banfield, D. A1 - Barthelemy, M. A1 - Bisi, M. M. A1 - Blum, J. A1 - Bocanegra-Bahamon, T. A1 - Bonfond, B. A1 - Bracken, C. A1 - Brandt, P. A1 - Briand, C. A1 - Briois, C. A1 - Brooks, S. A1 - Castillo-Rogez, J. A1 - Cavalie, T. A1 - Christophe, B. A1 - Coates, Andrew J. A1 - Collinson, G. A1 - Cooper, J. F. A1 - Costa-Sitja, M. A1 - Courtin, R. A1 - Daglis, I. A. A1 - De Pater, Imke A1 - Desai, M. A1 - Dirkx, D. A1 - Dougherty, M. K. A1 - Ebert, R. W. A1 - Filacchione, Gianrico A1 - Fletcher, Leigh N. A1 - Fortney, J. A1 - Gerth, I. A1 - Grassi, D. A1 - Grodent, D. A1 - Grün, Eberhard A1 - Gustin, J. A1 - Hedman, M. A1 - Helled, R. A1 - Henri, P. A1 - Hess, Sebastien A1 - Hillier, J. K. A1 - Hofstadter, M. H. A1 - Holme, R. A1 - Horanyi, M. A1 - Hospodarsky, George B. A1 - Hsu, S. A1 - Irwin, P. A1 - Jackman, C. M. A1 - Karatekin, O. A1 - Kempf, Sascha A1 - Khalisi, E. A1 - Konstantinidis, K. A1 - Kruger, H. A1 - Kurth, William S. A1 - Labrianidis, C. A1 - Lainey, V. A1 - Lamy, L. L. A1 - Laneuville, Matthieu A1 - Lucchesi, D. A1 - Luntzer, A. A1 - MacArthur, J. A1 - Maier, A. A1 - Masters, A. A1 - McKenna-Lawlor, S. A1 - Melin, H. A1 - Milillo, A. A1 - Moragas-Klostermeyer, Georg A1 - Morschhauser, Achim A1 - Moses, J. I. A1 - Mousis, O. A1 - Nettelmann, N. A1 - Neubauer, F. M. A1 - Nordheim, T. A1 - Noyelles, B. A1 - Orton, G. S. A1 - Owens, Mathew A1 - Peron, R. A1 - Plainaki, C. A1 - Postberg, F. A1 - Rambaux, N. A1 - Retherford, K. A1 - Reynaud, Serge A1 - Roussos, E. A1 - Russell, C. T. A1 - Rymer, Am. A1 - Sallantin, R. A1 - Sanchez-Lavega, A. A1 - Santolik, O. A1 - Saur, J. A1 - Sayanagi, Km. A1 - Schenk, P. A1 - Schubert, J. A1 - Sergis, N. A1 - Sittler, E. C. A1 - Smith, A. A1 - Spahn, Frank A1 - Srama, Ralf A1 - Stallard, T. A1 - Sterken, V. A1 - Sternovsky, Zoltan A1 - Tiscareno, M. A1 - Tobie, G. A1 - Tosi, F. A1 - Trieloff, M. A1 - Turrini, D. A1 - Turtle, E. P. A1 - Vinatier, S. A1 - Wilson, R. A1 - Zarkat, P. T1 - The science case for an orbital mission to Uranus: Exploring the origins and evolution of ice giant planets JF - Planetary and space science N2 - Giant planets helped to shape the conditions we see in the Solar System today and they account for more than 99% of the mass of the Sun's planetary system. They can be subdivided into the Ice Giants (Uranus and Neptune) and the Gas Giants (Jupiter and Saturn), which differ from each other in a number of fundamental ways. Uranus, in particular is the most challenging to our understanding of planetary formation and evolution, with its large obliquity, low self-luminosity, highly asymmetrical internal field, and puzzling internal structure. Uranus also has a rich planetary system consisting of a system of inner natural satellites and complex ring system, five major natural icy satellites, a system of irregular moons with varied dynamical histories, and a highly asymmetrical magnetosphere. Voyager 2 is the only spacecraft to have explored Uranus, with a flyby in 1986, and no mission is currently planned to this enigmatic system. However, a mission to the uranian system would open a new window on the origin and evolution of the Solar System and would provide crucial information on a wide variety of physicochemical processes in our Solar System. These have clear implications for understanding exoplanetary systems. In this paper we describe the science case for an orbital mission to Uranus with an atmospheric entry probe to sample the composition and atmospheric physics in Uranus' atmosphere. The characteristics of such an orbiter and a strawman scientific payload are described and we discuss the technical challenges for such a mission. This paper is based on a white paper submitted to the European Space Agency's call for science themes for its large-class mission programme in 2013. KW - Uranus KW - Magnetosphere KW - Atmosphere KW - Natural satellites KW - Rings KW - Planetary interior Y1 - 2014 U6 - https://doi.org/10.1016/j.pss.2014.08.009 SN - 0032-0633 VL - 104 SP - 122 EP - 140 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Hsu, Hsiang-Wen A1 - Schmidt, Jürgen A1 - Kempf, Sascha A1 - Postberg, Frank A1 - Moragas-Klostermeyer, Georg A1 - Seiss, Martin A1 - Hoffmann, Holger A1 - Burton, Marcia A1 - Ye, ShengYi A1 - Kurth, William S. A1 - Horanyi, Mihaly A1 - Khawaja, Nozair A1 - Spahn, Frank A1 - Schirdewahn, Daniel A1 - Moore, Luke A1 - Cuzzi, Jeff A1 - Jones, Geraint H. A1 - Srama, Ralf T1 - In situ collection of dust grains falling from Saturn’s rings into its atmosphere JF - Science N2 - Saturn’s main rings are composed of >95% water ice, and the nature of the remaining few percent has remained unclear. The Cassini spacecraft’s traversals between Saturn and its innermost D ring allowed its cosmic dust analyzer (CDA) to collect material released from the main rings and to characterize the ring material infall into Saturn. We report the direct in situ detection of material from Saturn’s dense rings by the CDA impact mass spectrometer. Most detected grains are a few tens of nanometers in size and dynamically associated with the previously inferred “ring rain.” Silicate and water-ice grains were identified, in proportions that vary with latitude. Silicate grains constitute up to 30% of infalling grains, a higher percentage than the bulk silicate content of the rings. Y1 - 2018 U6 - https://doi.org/10.1126/science.aat3185 SN - 0036-8075 SN - 1095-9203 VL - 362 IS - 6410 SP - 49 EP - + PB - American Assoc. for the Advancement of Science CY - Washington ER - TY - JOUR A1 - Buratti, Bonnie J. A1 - Thomas, P. C. A1 - Roussos, E. A1 - Howett, Carly A1 - Seiss, Martin A1 - Hendrix, A. R. A1 - Helfenstein, Paul A1 - Brown, R. H. A1 - Clark, R. N. A1 - Denk, Tilmann A1 - Filacchione, Gianrico A1 - Hoffmann, Holger A1 - Jones, Geraint H. A1 - Khawaja, N. A1 - Kollmann, Peter A1 - Krupp, Norbert A1 - Lunine, Jonathan A1 - Momary, T. W. A1 - Paranicas, Christopher A1 - Postberg, Frank A1 - Sachse, Manuel A1 - Spahn, Frank A1 - Spencer, John A1 - Srama, Ralf A1 - Albin, T. A1 - Baines, K. H. A1 - Ciarniello, Mauro A1 - Economou, Thanasis A1 - Hsu, Hsiang-Wen A1 - Kempf, Sascha A1 - Krimigis, Stamatios M. A1 - Mitchell, Donald A1 - Moragas-Klostermeyer, Georg A1 - Nicholson, Philip D. A1 - Porco, C. C. A1 - Rosenberg, Heike A1 - Simolka, Jonas A1 - Soderblom, Laurence A. T1 - Close Cassini flybys of Saturn’s ring moons Pan, Daphnis, Atlas, Pandora, and Epimetheus JF - Science N2 - Saturn’s main ring system is associated with a set of small moons that either are embedded within it or interact with the rings to alter their shape and composition. Five close flybys of the moons Pan, Daphnis, Atlas, Pandora, and Epimetheus were performed between December 2016 and April 2017 during the ring-grazing orbits of the Cassini mission. Data on the moons’ morphology, structure, particle environment, and composition were returned, along with images in the ultraviolet and thermal infrared. We find that the optical properties of the moons’ surfaces are determined by two competing processes: contamination by a red material formed in Saturn’s main ring system and accretion of bright icy particles or water vapor from volcanic plumes originating on the moon Enceladus. Y1 - 2019 U6 - https://doi.org/10.1126/science.aat2349 SN - 0036-8075 SN - 1095-9203 VL - 364 IS - 6445 SP - 1053 PB - American Assoc. for the Advancement of Science CY - Washington ER -