TY - JOUR A1 - Quirico, E. A1 - Moroz, Liubov V. A1 - Schmitt, B. A1 - Arnold, Gabriele A1 - Faure, M. A1 - Beck, P. A1 - Bonal, L. A1 - Ciarniello, M. A1 - Capaccioni, F. A1 - Filacchione, G. A1 - Erard, S. A1 - Leyrat, C. A1 - Bockelee-Morvan, D. A1 - Zinzi, A. A1 - Palomba, E. A1 - Drossart, P. A1 - Tosi, F. A1 - Capria, M. T. A1 - De Sanctis, M. C. A1 - Raponi, A. A1 - Fonti, S. A1 - Mancarella, F. A1 - Orofino, V. A1 - Barucci, A. A1 - Blecka, M. I. A1 - Carlson, R. A1 - Despan, D. A1 - Faure, A. A1 - Fornasier, S. A1 - Gudipati, M. S. A1 - Longobardo, A. A1 - Markus, K. A1 - Mennella, V. A1 - Merlin, F. A1 - Piccioni, G. A1 - Rousseau, B. A1 - Taylor, F. T1 - Refractory and semi-volatile organics at the surface of comet 67P/Churyumov-Gerasimenko: Insights from the VIRTIS/Rosetta imaging spectrometer JF - Icarus : international journal of solar system studies N2 - The VIRTIS (Visible, Infrared and Thermal Imaging Spectrometer) instrument aboard the Rosetta spacecraft has performed extensive spectral mapping of the surface of comet 67P/Churyumov-Gerasimenko in the range 0.3-5 mu m. The reflectance spectra collected across the surface display a low reflectance factor over the whole spectral range, two spectral slopes in the visible and near-infrared ranges and a broad absorption band centered at 3.2 mu m. The first two of these characteristics are typical of dark small bodies of the Solar System and are difficult to interpret in terms of composition. Moreover, solar wind irradiation may modify the structure and composition of surface materials and there is no unequivocal interpretation of these spectra devoid of vibrational bands. To circumvent these problems, we consider the composition of cometary grains analyzed in the laboratory to constrain the nature of the cometary materials and consider results on surface rejuvenation and solar wind processing provided by the OSIRIS and ROSINA instruments, respectively. Our results lead to five main conclusions: (i) The low albedo of comet 67P/CG is accounted for by a dark refractory polyaromatic carbonaceous component mixed with opaque minerals. VIRTIS data do not provide direct insights into the nature of these opaque minerals. However, according to the composition of cometary grains analyzed in the laboratory, we infer that they consist of Fe-Ni alloys and FeS sulfides. (ii) A semi-volatile component, consisting of a complex mix of low weight molecular species not volatilized at T similar to 220 K, is likely a major carrier of the 3.2 p.m band. Water ice contributes significantly to this feature in the neck region but not in other regions of the comet. COOH in carboxylic acids is the only chemical group that encompasses the broad width of this feature. It appears as a highly plausible candidate along with the NH4+ ion. (iii) Photolytic/thermal residues, produced in the laboratory from interstellar ice analogs, are potentially good spectral analogs. (iv) No hydrated minerals were identified and our data support the lack of genetic links with the CI, CR and CM primitive chondrites. This concerns in particular the Orgueil chondrite, previously suspected to have been of cometary origin. (v) The comparison between fresh and aged terrains revealed no effect of solar wind irradiation on the 3.2 mu m band. This is consistent with the presence of efficient resurfacing processes such as dust transport from the interior to the surface, as revealed by the OSIRIS camera. (C) 2016 Elsevier Inc. All rights reserved. KW - Comets KW - Organic chemistry KW - Infrared observations KW - Meteorites KW - Spectrophotometry Y1 - 2016 U6 - https://doi.org/10.1016/j.icarus.2016.02.028 SN - 0019-1035 SN - 1090-2643 VL - 272 SP - 32 EP - 47 PB - Elsevier CY - San Diego ER - TY - JOUR A1 - Rinaldi, G. A1 - Formisano, M. A1 - Kappel, David A1 - Capaccioni, F. A1 - Bockelee-Morvan, D. A1 - Cheng, Y-C A1 - Vincent, J-B A1 - Deshapriya, P. A1 - Arnold, G. A1 - Capria, M. T. A1 - Ciarniello, M. A1 - De Sanctis, M. C. A1 - Doose, L. A1 - Erard, S. A1 - Federico, C. A1 - Filacchione, G. A1 - Fink, U. A1 - Leyrat, C. A1 - Longobardo, A. A1 - Magni, G. A1 - Mighorini, A. A1 - Mottola, S. A1 - Naletto, G. A1 - Raponi, A. A1 - Taylor, F. A1 - Tosi, F. A1 - Tozzi, G. P. A1 - Salatti, M. T1 - Analysis of night-side dust activity on comet 67P observed by VIRTIS-M BT - a new method to constrain the thermal inertia on the surface JF - Astronomy and astrophysics : an international weekly journal N2 - On 2015 July 18, near perihelion at a heliocentric distance of 1.28 au, the Visible InfraRed Thermal Imaging Spectrometer (VIRTIS-M) on board the Rosetta spacecraft had the opportunity of observing dust activity in the inner coma with a view of the night side (shadowed side) of comet 67P/Churyumov-Gerasimenko. At the time of the measurements we present here, we observe a dust plume that originates on the far side of the nucleus. We are able to identify the approximate location of its source at the boundary between the Hapi and Anuket regions, and we find that it has been in darkness for some hours before the observation. Assuming that this time span is equal to the conductive time scale, we obtain a thermal inertia in the range 25-36 W K-1 m(-2) s(-1/2). These thermal inertia values can be used to verify with a 3D finite-element method (REM) numerical code whether the surface and subsurface temperatures agree with the values found in the literature. We explored three different configurations: (1) a layer of water ice mixed with dust beneath a dust mantle of 5 mm with thermal inertia of 36 J m(-2) K-1 S-0.5 ; (2) the same structure, but with thermal inertia of 100 J m(-2) K-1 S-0.5; (3) an ice-dust mixture that is directly exposed. Of these three configurations, the first seems to be the most reasonable, both for the low thermal inertia and for the agreement with the surface and subsurface temperatures that have been found for the comet 67P/Churyumov-Gerasimenko. The spectral properties of the plume show that the visible dust color ranged from 16 +/- 4.8%/100 nm to 13 +/- 2.6%/100 nm, indicating that this plume has no detectable color gradient. The morphology of the plume can be classified as a narrow jet that has an estimated total ejected mass of between 6 and 19 tons when we assume size distribution indices between -2.5 and -3. KW - comets: general KW - comets: individual: 67P/Churyumov-Gerasimenko KW - infrared: planetary systems Y1 - 2019 U6 - https://doi.org/10.1051/0004-6361/201834907 SN - 1432-0746 VL - 630 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Tubiana, C. A1 - Rinaldi, G. A1 - Guettler, C. A1 - Snodgrass, C. A1 - Shi, X. A1 - Hu, X. A1 - Marschall, R. A1 - Fulle, M. A1 - Bockeele-Morvan, D. A1 - Naletto, G. A1 - Capaccioni, F. A1 - Sierks, H. A1 - Arnold, G. A1 - Barucci, M. A. A1 - Bertaux, J-L A1 - Bertini, I A1 - Bodewits, D. A1 - Capria, M. T. A1 - Ciarniello, M. A1 - Cremonese, G. A1 - Crovisier, J. A1 - Da Deppo, V A1 - Debei, S. A1 - De Cecco, M. A1 - Deller, J. A1 - De Sanctis, M. C. A1 - Davidsson, B. A1 - Doose, L. A1 - Erard, S. A1 - Filacchione, G. A1 - Fink, U. A1 - Formisano, M. A1 - Fornasier, S. A1 - Gutierrez, P. J. A1 - Ip, W-H A1 - Ivanovski, S. A1 - Kappel, David A1 - Keller, H. U. A1 - Kolokolova, L. A1 - Koschny, D. A1 - Krueger, H. A1 - La Forgia, F. A1 - Lamy, P. L. A1 - Lara, L. M. A1 - Lazzarin, M. A1 - Levasseur-Regourd, A. C. A1 - Lin, Z-Y A1 - Longobardo, A. A1 - Lopez-Moreno, J. J. A1 - Marzari, F. A1 - Migliorini, A. A1 - Mottola, S. A1 - Rodrigo, R. A1 - Taylor, F. A1 - Toth, I A1 - Zakharov, V T1 - Diurnal variation of dust and gas production in comet 67P/Churyumov-Gerasimenko at the inbound equinox as seen by OSIRIS and VIRTIS-M on board Rosetta JF - Astronomy and astrophysics : an international weekly journal N2 - Context. On 27 April 2015, when comet 67P/Churyumov-Gerasimenko was at 1.76 au from the Sun and moving toward perihelion, the OSIRIS and VIRTIS-M instruments on board the Rosetta spacecraft simultaneously observed the evolving dust and gas coma during a complete rotation of the comet. Aims. We aim to characterize the spatial distribution of dust, H2O, and CO2 gas in the inner coma. To do this, we performed a quantitative analysis of the release of dust and gas and compared the observed H2O production rate with the rate we calculated using a thermophysical model. Methods. For this study we selected OSIRIS WAC images at 612 nm (dust) and VIRTIS-M image cubes at 612 nm, 2700 nm (H2O emission band), and 4200 nm (CO2 emission band). We measured the average signal in a circular annulus to study the spatial variation around the comet, and in a sector of the annulus to study temporal variation in the sunward direction with comet rotation, both at a fixed distance of 3.1 km from the comet center. Results. The spatial correlation between dust and water, both coming from the sunlit side of the comet, shows that water is the main driver of dust activity in this time period. The spatial distribution of CO2 is not correlated with water and dust. There is no strong temporal correlation between the dust brightness and water production rate as the comet rotates. The dust brightness shows a peak at 0 degrees subsolar longitude, which is not pronounced in the water production. At the same epoch, there is also a maximum in CO2 production. An excess of measured water production with respect to the value calculated using a simple thermophysical model is observed when the head lobe and regions of the southern hemisphere with strong seasonal variations are illuminated (subsolar longitude 270 degrees-50 degrees). A drastic decrease in dust production when the water production (both measured and from the model) displays a maximum occurs when typical northern consolidated regions are illuminated and the southern hemisphere regions with strong seasonal variations are instead in shadow (subsolar longitude 50 degrees-90 degrees). Possible explanations of these observations are presented and discussed. KW - comets: general KW - comets: individual: 67P/Churyumov-Gerasimenko KW - methods: data analysis Y1 - 2019 U6 - https://doi.org/10.1051/0004-6361/201834869 SN - 1432-0746 VL - 630 PB - EDP Sciences CY - Les Ulis ER -