TY - BOOK A1 - Draisbach, Uwe A1 - Naumann, Felix A1 - Szott, Sascha A1 - Wonneberg, Oliver T1 - Adaptive windows for duplicate detection N2 - Duplicate detection is the task of identifying all groups of records within a data set that represent the same real-world entity, respectively. This task is difficult, because (i) representations might differ slightly, so some similarity measure must be defined to compare pairs of records and (ii) data sets might have a high volume making a pair-wise comparison of all records infeasible. To tackle the second problem, many algorithms have been suggested that partition the data set and compare all record pairs only within each partition. One well-known such approach is the Sorted Neighborhood Method (SNM), which sorts the data according to some key and then advances a window over the data comparing only records that appear within the same window. We propose several variations of SNM that have in common a varying window size and advancement. The general intuition of such adaptive windows is that there might be regions of high similarity suggesting a larger window size and regions of lower similarity suggesting a smaller window size. We propose and thoroughly evaluate several adaption strategies, some of which are provably better than the original SNM in terms of efficiency (same results with fewer comparisons). N2 - Duplikaterkennung beschreibt das Auffinden von mehreren Datensätzen, die das gleiche Realwelt-Objekt repräsentieren. Diese Aufgabe ist nicht trivial, da sich (i) die Datensätze geringfügig unterscheiden können, so dass Ähnlichkeitsmaße für einen paarweisen Vergleich benötigt werden, und (ii) aufgrund der Datenmenge ein vollständiger, paarweiser Vergleich nicht möglich ist. Zur Lösung des zweiten Problems existieren verschiedene Algorithmen, die die Datenmenge partitionieren und nur noch innerhalb der Partitionen Vergleiche durchführen. Einer dieser Algorithmen ist die Sorted-Neighborhood-Methode (SNM), welche Daten anhand eines Schlüssels sortiert und dann ein Fenster über die sortierten Daten schiebt. Vergleiche werden nur innerhalb dieses Fensters durchgeführt. Wir beschreiben verschiedene Variationen der Sorted-Neighborhood-Methode, die auf variierenden Fenstergrößen basieren. Diese Ansätze basieren auf der Intuition, dass Bereiche mit größerer und geringerer Ähnlichkeiten innerhalb der sortierten Datensätze existieren, für die entsprechend größere bzw. kleinere Fenstergrößen sinnvoll sind. Wir beschreiben und evaluieren verschiedene Adaptierungs-Strategien, von denen nachweislich einige bezüglich Effizienz besser sind als die originale Sorted-Neighborhood-Methode (gleiches Ergebnis bei weniger Vergleichen). T3 - Technische Berichte des Hasso-Plattner-Instituts für Digital Engineering an der Universität Potsdam - 49 KW - Informationssysteme KW - Datenqualität KW - Datenintegration KW - Duplikaterkennung KW - Duplicate Detection KW - Data Quality KW - Data Integration KW - Information Systems Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-53007 SN - 978-3-86956-143-1 SN - 1613-5652 SN - 2191-1665 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - JOUR A1 - Draisbach, Uwe A1 - Christen, Peter A1 - Naumann, Felix T1 - Transforming pairwise duplicates to entity clusters for high-quality duplicate detection JF - ACM Journal of Data and Information Quality N2 - Duplicate detection algorithms produce clusters of database records, each cluster representing a single real-world entity. As most of these algorithms use pairwise comparisons, the resulting (transitive) clusters can be inconsistent: Not all records within a cluster are sufficiently similar to be classified as duplicate. Thus, one of many subsequent clustering algorithms can further improve the result.
We explain in detail, compare, and evaluate many of these algorithms and introduce three new clustering algorithms in the specific context of duplicate detection. Two of our three new algorithms use the structure of the input graph to create consistent clusters. Our third algorithm, and many other clustering algorithms, focus on the edge weights, instead. For evaluation, in contrast to related work, we experiment on true real-world datasets, and in addition examine in great detail various pair-selection strategies used in practice. While no overall winner emerges, we are able to identify best approaches for different situations. In scenarios with larger clusters, our proposed algorithm, Extended Maximum Clique Clustering (EMCC), and Markov Clustering show the best results. EMCC especially outperforms Markov Clustering regarding the precision of the results and additionally has the advantage that it can also be used in scenarios where edge weights are not available. KW - Record linkage KW - data matching KW - entity resolution KW - deduplication KW - clustering Y1 - 2019 U6 - https://doi.org/10.1145/3352591 SN - 1936-1955 SN - 1936-1963 VL - 12 IS - 1 SP - 1 EP - 30 PB - Association for Computing Machinery CY - New York ER - TY - THES A1 - Draisbach, Uwe T1 - Efficient duplicate detection and the impact of transitivity T1 - Effiziente Dublettenerkennung und der Einfluss von Transitivität N2 - Duplicate detection describes the process of finding multiple representations of the same real-world entity in the absence of a unique identifier, and has many application areas, such as customer relationship management, genealogy and social sciences, or online shopping. Due to the increasing amount of data in recent years, the problem has become even more challenging on the one hand, but has led to a renaissance in duplicate detection research on the other hand. This thesis examines the effects and opportunities of transitive relationships on the duplicate detection process. Transitivity implies that if record pairs ⟨ri,rj⟩ and ⟨rj,rk⟩ are classified as duplicates, then also record pair ⟨ri,rk⟩ has to be a duplicate. However, this reasoning might contradict with the pairwise classification, which is usually based on the similarity of objects. An essential property of similarity, in contrast to equivalence, is that similarity is not necessarily transitive. First, we experimentally evaluate the effect of an increasing data volume on the threshold selection to classify whether a record pair is a duplicate or non-duplicate. Our experiments show that independently of the pair selection algorithm and the used similarity measure, selecting a suitable threshold becomes more difficult with an increasing number of records due to an increased probability of adding a false duplicate to an existing cluster. Thus, the best threshold changes with the dataset size, and a good threshold for a small (possibly sampled) dataset is not necessarily a good threshold for a larger (possibly complete) dataset. As data grows over time, earlier selected thresholds are no longer a suitable choice, and the problem becomes worse for datasets with larger clusters. Second, we present with the Duplicate Count Strategy (DCS) and its enhancement DCS++ two alternatives to the standard Sorted Neighborhood Method (SNM) for the selection of candidate record pairs. DCS adapts SNMs window size based on the number of detected duplicates and DCS++ uses transitive dependencies to save complex comparisons for finding duplicates in larger clusters. We prove that with a proper (domain- and data-independent!) threshold, DCS++ is more efficient than SNM without loss of effectiveness. Third, we tackle the problem of contradicting pairwise classifications. Usually, the transitive closure is used for pairwise classifications to obtain a transitively closed result set. However, the transitive closure disregards negative classifications. We present three new and several existing clustering algorithms and experimentally evaluate them on various datasets and under various algorithm configurations. The results show that the commonly used transitive closure is inferior to most other clustering algorithms, especially for the precision of results. In scenarios with larger clusters, our proposed EMCC algorithm is, together with Markov Clustering, the best performing clustering approach for duplicate detection, although its runtime is longer than Markov Clustering due to the subexponential time complexity. EMCC especially outperforms Markov Clustering regarding the precision of the results and additionally has the advantage that it can also be used in scenarios where edge weights are not available. N2 - Dubletten sind mehrere Repräsentationen derselben Entität in einem Datenbestand. Diese zu identifizieren ist das Ziel der Dublettenerkennung, wobei in der Regel Paare von Datensätzen anhand von Ähnlichkeitsmaßen miteinander verglichen und unter Verwendung eines Schwellwerts als Dublette oder Nicht-Dublette klassifiziert werden. Für Dublettenerkennung existieren verschiedene Anwendungsbereiche, beispielsweise im Kundenbeziehungsmanagement, beim Onlineshopping, der Genealogie und in den Sozialwissenschaften. Der in den letzten Jahren zu beobachtende Anstieg des gespeicherten Datenvolumens erschwert die Dublettenerkennung, da die Anzahl der benötigten Vergleiche quadratisch mit der Anzahl der Datensätze wächst. Durch Verwendung eines geeigneten Paarauswahl-Algorithmus kann die Anzahl der zu vergleichenden Paare jedoch reduziert und somit die Effizienz gesteigert werden. Die Dissertation untersucht die Auswirkungen und Möglichkeiten transitiver Beziehungen auf den Dublettenerkennungsprozess. Durch Transitivität lässt sich beispielsweise ableiten, dass aufgrund einer Klassifikation der Datensatzpaare ⟨ri,rj⟩ und ⟨rj,rk⟩ als Dublette auch die Datensätze ⟨ri,rk⟩ eine Dublette sind. Dies kann jedoch im Widerspruch zu einer paarweisen Klassifizierung stehen, denn im Unterschied zur Äquivalenz ist die Ähnlichkeit von Objekten nicht notwendigerweise transitiv. Im ersten Teil der Dissertation wird die Auswirkung einer steigenden Datenmenge auf die Wahl des Schwellwerts zur Klassifikation von Datensatzpaaren als Dublette oder Nicht-Dublette untersucht. Die Experimente zeigen, dass unabhängig von dem gewählten Paarauswahl-Algorithmus und des gewählten Ähnlichkeitsmaßes die Wahl eines geeigneten Schwellwerts mit steigender Datensatzanzahl schwieriger wird, da die Gefahr fehlerhafter Cluster-Zuordnungen steigt. Der optimale Schwellwert eines Datensatzes variiert mit dessen Größe. So ist ein guter Schwellwert für einen kleinen Datensatz (oder eine Stichprobe) nicht notwendigerweise ein guter Schwellwert für einen größeren (ggf. vollständigen) Datensatz. Steigt die Datensatzgröße im Lauf der Zeit an, so muss ein einmal gewählter Schwellwert ggf. nachjustiert werden. Aufgrund der Transitivität ist dies insbesondere bei Datensätzen mit größeren Clustern relevant. Der zweite Teil der Dissertation beschäftigt sich mit Algorithmen zur Auswahl geeigneter Datensatz-Paare für die Klassifikation. Basierend auf der Sorted Neighborhood Method (SNM) werden mit der Duplicate Count Strategy (DCS) und ihrer Erweiterung DCS++ zwei neue Algorithmen vorgestellt. DCS adaptiert die Fenstergröße in Abhängigkeit der Anzahl gefundener Dubletten und DCS++ verwendet zudem die transitive Abhängigkeit, um kostspielige Vergleiche einzusparen und trotzdem größere Cluster von Dubletten zu identifizieren. Weiterhin wird bewiesen, dass mit einem geeigneten Schwellwert DCS++ ohne Einbußen bei der Effektivität effizienter als die Sorted Neighborhood Method ist. Der dritte und letzte Teil der Arbeit beschäftigt sich mit dem Problem widersprüchlicher paarweiser Klassifikationen. In vielen Anwendungsfällen wird die Transitive Hülle zur Erzeugung konsistenter Cluster verwendet, wobei hierbei paarweise Klassifikationen als Nicht-Dublette missachtet werden. Es werden drei neue und mehrere existierende Cluster-Algorithmen vorgestellt und experimentell mit verschiedenen Datensätzen und Konfigurationen evaluiert. Die Ergebnisse zeigen, dass die Transitive Hülle den meisten anderen Clustering-Algorithmen insbesondere bei der Precision, definiert als Anteil echter Dubletten an der Gesamtzahl klassifizierter Dubletten, unterlegen ist. In Anwendungsfällen mit größeren Clustern ist der vorgeschlagene EMCC-Algorithmus trotz seiner subexponentiellen Laufzeit zusammen mit dem Markov-Clustering der beste Clustering-Ansatz für die Dublettenerkennung. EMCC übertrifft Markov Clustering insbesondere hinsichtlich der Precision der Ergebnisse und hat zusätzlich den Vorteil, dass dieser auch ohne Ähnlichkeitswerte eingesetzt werden kann. KW - Datenqualität KW - Datenintegration KW - Dubletten KW - Duplikaterkennung KW - data quality KW - data integration KW - duplicate detection KW - deduplication KW - entity resolution Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-572140 ER -