TY - JOUR A1 - Candan, Osman A1 - Koralay, O. E. A1 - Akal, Cemal B. A1 - Kaya, O. A1 - Oberhänsli, Roland A1 - Dora, O. O. A1 - Konak, N. A1 - Chen, F. T1 - Supra-Pan-African unconformity between core and cover series of the Menderes Massif/Turkey and its geological implications JF - Precambrian research N2 - Well-preserved primary contact relationships between a Late Proterozoic metasedimentary and the metagranitic core and Palaeozoic cover series of the Menderes Massif have been recognized in the eastern part of the Cine submassif on a regional-scale. Metaconglomerates occur as laterally discontinuous channel-fill bodies close the base of the metaquartzarenite directly above the basement. The pebbles in the metaconglomerates consist mainly of different types of tourmaline-rich leucocratic granitoids, tourmalinite and schist in a sandy matrix. Petrographic features, geochemical compositions and zircon radiometric ages (549.6 +/- 3.7-552.3 +/- 3.1 Ma) of the diagnostic clasts of the metaconglomerates (e.g. leucocratic granitoids and tourmalinites) show excellent agreement with their in situ equivalents (549.0 +/- 5.4 Ma) occurring in the Pan-African basement as stocks and veins. The correlation between clasts in the metaconglomerates and granitoids of the basement suggests that the primary contact between the basement and cover series is a regional unconformity (supra-Pan-African Unconformity) representing deep erosion of the Pan-African basement followed by the deposition of the cover series. Hence the usage of 'core-cover' terminology in the Menderes Massif is valid. Consequently, these new data preclude the views that the granitic precursors of the leucocratic orthogneisses are Tertiary intrusions. KW - Menderes Massif KW - Pan-African KW - Zircon age KW - Core complex KW - Turkey Y1 - 2011 U6 - https://doi.org/10.1016/j.precamres.2010.09.010 SN - 0301-9268 VL - 184 IS - 1-4 SP - 1 EP - 23 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Koralay, O. E. A1 - Candan, Osman A1 - Chen, F. A1 - Akal, Cemal B. A1 - Oberhänsli, Roland A1 - Satir, M. A1 - Dora, O. O. T1 - Pan-African magmatism in the Menderes Massif - geochronological data from leucocratic tourmaline orthogneisses in western Turkey JF - International journal of earth sciences N2 - The Menderes Massif, exposed in western Anatolia, is a metamorphic complex cropping out in the Alpine orogenic belt. The metamorphic rock succession of the Massif is made up of a Precambrian basement and overlying Paleozoic-early Tertiary cover series. The Pan-African basement is composed of late Proterozoic metasedimentary rocks consisting of partially migmatized paragneisses and conformably overlying medium- to high-grade mica schists, intruded by orthogneisses and metagabbros. Along the southern flank of the southern submassif, we recognized well-preserved primary contact relationship between biotite and leucocratic tourmaline orthogneisses and country rocks as the orthogneisses represent numerous large plutons, stocks and vein rocks intruded into a basement of garnet mica schists. Based on the radiometric data, the primary deposition age of the precursors of the country rocks, garnet mica schist, can be constrained between 600 and 550 Ma (latest Neoproterozoic). The North Africa-Arabian-Nubian Shield in the Mozambique Belt can be suggested as the possible provenance of these metaclastics. The intrusion ages of the leucocratic tourmaline orthogneisses and biotite orthogneisses were dated at 550-540 Ma (latest Neoproterozoic-earliest Cambrian) by zircon U/Pb and Pb/Pb geochronology. These granitoids represent the products of the widespread Pan-African acidic magmatic activity, which can be attributed to the closure of the Mozambique Ocean during the final collision of East and West Gondwana. Detrital zircon ages at about 550 Ma in the Paleozoic muscovite-quartz schists show that these Pan-African granitoids in the basement form the source rocks of the cover series of the Menderes Massif. KW - Menderes Massif KW - Leucocratic tourmaline orthogneisses KW - Pan-African magmatism KW - Zircon U/Pb and Pb-Pb ages KW - Mozambique Ocean KW - Gondwanaoberh Y1 - 2012 U6 - https://doi.org/10.1007/s00531-012-0775-2 SN - 1437-3254 VL - 101 IS - 8 SP - 2055 EP - 2081 PB - Springer CY - New York ER - TY - JOUR A1 - Agada, S. A1 - Chen, F. A1 - Geiger, S. A1 - Toigulova, G. A1 - Agar, Susan M. A1 - Shekhar, R. A1 - Benson, Gregory S. A1 - Hehmeyer, O. A1 - Amour, Frédéric A1 - Mutti, Maria A1 - Christ, Nicolas A1 - Immenhauser, A. T1 - Numerical simulation of fluid-flow processes in a 3D high-resolution carbonate reservoir analogue JF - Petroleum geoscience N2 - A high-resolution three-dimensional (3D) outcrop model of a Jurassic carbonate ramp was used in order to perform a series of detailed and systematic flow simulations. The aim of this study was to test the impact of small- and large-scale geological features on reservoir performance and oil recovery. The digital outcrop model contains a wide range of sedimentological, diagenetic and structural features, including discontinuity surfaces, shoal bodies, mud mounds, oyster bioherms and fractures. Flow simulations are performed for numerical well testing and secondary oil recovery. Numerical well testing enables synthetic but systematic pressure responses to be generated for different geological features observed in the outcrops. This allows us to assess and rank the relative impact of specific geological features on reservoir performance. The outcome documents that, owing to the realistic representation of matrix heterogeneity, most diagenetic and structural features cannot be linked to a unique pressure signature. Instead, reservoir performance is controlled by subseismic faults and oyster bioherms acting as thief zones. Numerical simulations of secondary recovery processes reveal strong channelling of fluid flow into high-permeability layers as the primary control for oil recovery. However, appropriate reservoir-engineering solutions, such as optimizing well placement and injection fluid, can reduce channelling and increase oil recovery. Y1 - 2014 U6 - https://doi.org/10.1144/petgeo2012-096 SN - 1354-0793 VL - 20 IS - 1 SP - 125 EP - 142 PB - Geological Soc. Publ. House CY - Bath ER - TY - JOUR A1 - Candan, O. A1 - Koralay, O. E. A1 - Topuz, G. A1 - Oberhänsli, Roland A1 - Fritz, H. A1 - Collins, A. S. A1 - Chen, F. T1 - Late Neoproterozoic gabbro emplacement followed by early Cambrian eclogite-facies metamorphism in the Menderes Massif (W. Turkey): Implications on the final assembly of Gondwana JF - Gondwana research : international geoscience journal ; official journal of the International Association for Gondwana Research N2 - Numerous (meta-)gabbroic dikes or stocks occur within the latest Neoproterozoic-early Cambrian series of the Menderes Massif (Anatolide-Tauride Block, western Turkey). These well-preserved rocks were locally converted into eclogitic metagabbros and garnet amphibolites along the contacts or shear zones. Both bulk-rock composition and compositions of igneous clinopyroxenes suggest continental tholeiitic affinity. U-Pb dating of igneous zircons from gabbroic rocks yielded a mean age of 563 +/- 1 Ma (2 sigma), indicating emplacement during the latest Neoproterozoic (Ediacaran). On the other hand, rims of zircons from eclogitic metagabbro gave 535 +/- 3 Ma (2 sigma) (early Cambrian), in addition to 558 +/- 3 Ma (2 sigma) obtained from the igneous core of zircons. These ages are interpreted as the time of high-P metamorphism and crystallization age of gabbroic protolith, respectively. Given the estimated paleogeographic position of the Anatolide-Tauride Block during the late Neoproterozoic and early Cambrian, this orogenic event can be spatially and temporally related to the northward continuity of 600-500 Ma orogenic event (Malagasy/Kuunga orogeny) extending from western margin of India, Madagascar, via Arabia up to northern margin of Gondwana beneath thick Phanerozoic cover series in Arabian Peninsula. Therefore, the high-P evolution of the basement of the Menderes Massif and associated basic intrusions can be interpreted to mark the latest stages of consumption of the basin/oceanic branches and final amalgamation of the Gondwana during the late Neoproterozoic-early Cambrian around the Arabian region. (C) 2015 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved. KW - Gabbro KW - Eclogite KW - Malagasy/Kuunga orogeny KW - Menderes Massif KW - Turkey Y1 - 2016 U6 - https://doi.org/10.1016/j.gr.2015.02.015 SN - 1342-937X SN - 1878-0571 VL - 34 SP - 158 EP - 173 PB - Elsevier CY - Amsterdam ER -