TY - JOUR A1 - Heinrich, Ingo A1 - Balanzategui, Daniel A1 - Bens, Oliver A1 - Blasch, Gerald A1 - Blume, Theresa A1 - Boettcher, Falk A1 - Borg, Erik A1 - Brademann, Brian A1 - Brauer, Achim A1 - Conrad, Christopher A1 - Dietze, Elisabeth A1 - Dräger, Nadine A1 - Fiener, Peter A1 - Gerke, Horst H. A1 - Güntner, Andreas A1 - Heine, Iris A1 - Helle, Gerhard A1 - Herbrich, Marcus A1 - Harfenmeister, Katharina A1 - Heussner, Karl-Uwe A1 - Hohmann, Christian A1 - Itzerott, Sibylle A1 - Jurasinski, Gerald A1 - Kaiser, Knut A1 - Kappler, Christoph A1 - Koebsch, Franziska A1 - Liebner, Susanne A1 - Lischeid, Gunnar A1 - Merz, Bruno A1 - Missling, Klaus Dieter A1 - Morgner, Markus A1 - Pinkerneil, Sylvia A1 - Plessen, Birgit A1 - Raab, Thomas A1 - Ruhtz, Thomas A1 - Sachs, Torsten A1 - Sommer, Michael A1 - Spengler, Daniel A1 - Stender, Vivien A1 - Stüve, Peter A1 - Wilken, Florian T1 - Interdisciplinary Geo-ecological Research across Time Scales in the Northeast German Lowland Observatory (TERENO-NE) JF - Vadose zone journal N2 - The Northeast German Lowland Observatory (TERENO-NE) was established to investigate the regional impact of climate and land use change. TERENO-NE focuses on the Northeast German lowlands, for which a high vulnerability has been determined due to increasing temperatures and decreasing amounts of precipitation projected for the coming decades. To facilitate in-depth evaluations of the effects of climate and land use changes and to separate the effects of natural and anthropogenic drivers in the region, six sites were chosen for comprehensive monitoring. In addition, at selected sites, geoarchives were used to substantially extend the instrumental records back in time. It is this combination of diverse disciplines working across different time scales that makes the observatory TERENO-NE a unique observation platform. We provide information about the general characteristics of the observatory and its six monitoring sites and present examples of interdisciplinary research activities at some of these sites. We also illustrate how monitoring improves process understanding, how remote sensing techniques are fine-tuned by the most comprehensive ground-truthing site DEMMIN, how soil erosion dynamics have evolved, how greenhouse gas monitoring of rewetted peatlands can reveal unexpected mechanisms, and how proxy data provides a long-term perspective of current ongoing changes. Y1 - 2018 U6 - https://doi.org/10.2136/vzj2018.06.0116 SN - 1539-1663 VL - 17 IS - 1 PB - Soil Science Society of America CY - Madison ER - TY - JOUR A1 - Garcin, Yannick A1 - Deschamps, Pierre A1 - Menot, Guillemette A1 - de Saulieu, Geoffroy A1 - Schefuss, Enno A1 - Sebag, David A1 - Dupont, Lydie M. A1 - Oslisly, Richard A1 - Brademann, Brian A1 - Mbusnum, Kevin G. A1 - Onana, Jean-Michel A1 - Ako, Andrew A. A1 - Epp, Laura Saskia A1 - Tjallingii, Rik A1 - Strecker, Manfred A1 - Brauer, Achim A1 - Sachse, Dirk T1 - Early anthropogenic impact on Western Central African rainforests 2,600 y ago JF - Proceedings of the National Academy of Sciences of the United States of America N2 - A potential human footprint on Western Central African rainforests before the Common Era has become the focus of an ongoing controversy. Between 3,000 y ago and 2,000 y ago, regional pollen sequences indicate a replacement of mature rainforests by a forest-savannah mosaic including pioneer trees. Although some studies suggested an anthropogenic influence on this forest fragmentation, current interpretations based on pollen data attribute the "rainforest crisis" to climate change toward a drier, more seasonal climate. A rigorous test of this hypothesis, however, requires climate proxies independent of vegetation changes. Here we resolve this controversy through a continuous 10,500-y record of both vegetation and hydrological changes from Lake Barombi in Southwest Cameroon based on changes in carbon and hydrogen isotope compositions of plant waxes. delta C-13-inferred vegetation changes confirm a prominent and abrupt appearance of C-4 plants in the Lake Barombi catchment, at 2,600 calendar years before AD 1950 (cal y BP), followed by an equally sudden return to rainforest vegetation at 2,020 cal y BP. delta D values from the same plant wax compounds, however, show no simultaneous hydrological change. Based on the combination of these data with a comprehensive regional archaeological database we provide evidence that humans triggered the rainforest fragmentation 2,600 y ago. Our findings suggest that technological developments, including agricultural practices and iron metallurgy, possibly related to the large-scale Bantu expansion, significantly impacted the ecosystems before the Common Era. KW - Western Central Africa KW - late Holocene KW - rainforest crisis KW - paleohydrology KW - human activity Y1 - 2018 U6 - https://doi.org/10.1073/pnas.1715336115 SN - 0027-8424 VL - 115 IS - 13 SP - 3261 EP - 3266 PB - National Acad. of Sciences CY - Washington ER - TY - GEN A1 - Garcin, Yannick A1 - Deschamps, Pierre A1 - Menot, Guillemette A1 - de Saulieu, Geoffroy A1 - Schefuss, Enno A1 - Sebag, David A1 - Dupont, Lydie M. A1 - Oslisly, Richard A1 - Brademann, Brian A1 - Mbusnum, Kevin G. A1 - Onana, Jean-Michel A1 - Ako, Andrew A. A1 - Epp, Laura Saskia A1 - Tjallingii, Rik A1 - Strecker, Manfred A1 - Brauer, Achim A1 - Sachse, Dirk T1 - No evidence for climate variability during the late Holocene rainforest crisis in Western Central Africa REPLY T2 - Proceedings of the National Academy of Sciences of the United States of America Y1 - 2018 U6 - https://doi.org/10.1073/pnas.1808481115 SN - 0027-8424 VL - 115 IS - 29 SP - E6674 EP - E6675 PB - National Acad. of Sciences CY - Washington ER - TY - GEN A1 - Garcin, Yannick A1 - Deschamps, Pierre A1 - Menot, Guillemette A1 - de Saulieu, Geoffroy A1 - Schefuss, Enno A1 - Sebag, David A1 - Dupont, Lydie M. A1 - Oslisly, Richard A1 - Brademann, Brian A1 - Mbusnum, Kevin G. A1 - Onana, Jean-Michel A1 - Ako, Andrew A. A1 - Epp, Laura Saskia A1 - Tjallingii, Rik A1 - Strecker, Manfred A1 - Brauer, Achim A1 - Sachse, Dirk T1 - Human activity is the most probable trigger of the late Holocene rainforest crisis in Western Central Africa Reply T2 - Proceedings of the National Academy of Sciences of the United States of America Y1 - 2018 U6 - https://doi.org/10.1073/pnas.1805582115 SN - 0027-8424 VL - 115 IS - 21 SP - E4735 EP - E4736 PB - National Acad. of Sciences CY - Washington ER -