TY - JOUR A1 - Eckert, Sebastian A1 - Niskanen, Johannes A1 - Jay, Raphael Martin A1 - Miedema, Piter S. A1 - Fondell, Mattis A1 - Kennedy, Brian A1 - Quevedo, Wilson A1 - Iannuzzi, Marcella A1 - Föhlisch, Alexander T1 - Valence orbitals and local bond dynamics around N atoms of histidine under X-ray irradiation JF - Physical chemistry, chemical physics : a journal of European Chemical Societies N2 - The valence orbitals of aqueous histidine under basic, neutral and acidic conditions and their X-ray induced transformations have been monitored through N 1s resonant inelastic X-ray scattering. Using density functional ab initio molecular dynamics simulations in the core-hole state within the Z + 1 approximation, core-excitation-induced molecular transformations are quantified. Spectroscopic evidence for a highly directional X-ray-induced local N-H dissociation within the scattering duration is presented for acidic histidine. Our report demonstrates a protonation-state and chemical-environment dependent propensity for a molecular dissociation, which is induced by the absorption of high energy photons. This case study indicates that structural deformations in biomolecules under exposure to ionizing radiation, yielding possible alteration or loss of function, is highly dependent on the physiological state of the molecule upon irradiation. Y1 - 2017 U6 - https://doi.org/10.1039/c7cp05713j SN - 1463-9076 SN - 1463-9084 VL - 19 SP - 32091 EP - 32098 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Fondell, Mattis A1 - Eckert, Sebastian A1 - Jay, Raphael Martin A1 - Weniger, Christian A1 - Quevedo, Wilson A1 - Niskanen, Johannes A1 - Kennedy, Brian A1 - Sorgenfrei, Nomi A1 - Schick, Daniel A1 - Giangrisostomi, Erika A1 - Ovsyannikov, Ruslan A1 - Adamczyk, Katrin A1 - Huse, Nils A1 - Wernet, Philippe A1 - Mitzner, Rolf A1 - Föhlisch, Alexander T1 - Time-resolved soft X-ray absorption spectroscopy in transmission mode on liquids at MHz repetition rates JF - Structural dynamics N2 - We present a setup combining a liquid flatjet sample delivery and a MHz laser system for time-resolved soft X-ray absorption measurements of liquid samples at the high brilliance undulator beamline UE52-SGM at Bessy II yielding unprecedented statistics in this spectral range. We demonstrate that the efficient detection of transient absorption changes in transmission mode enables the identification of photoexcited species in dilute samples. With iron(II)-trisbipyridine in aqueous solution as a benchmark system, we present absorption measurements at various edges in the soft X-ray regime. In combination with the wavelength tunability of the laser system, the set-up opens up opportunities to study the photochemistry of many systems at low concentrations, relevant to materials sciences, chemistry, and biology. (C) 2017 Author(s). Y1 - 2017 U6 - https://doi.org/10.1063/1.4993755 SN - 2329-7778 VL - 4 PB - American Institute of Physics CY - Melville ER -