TY - THES A1 - Sin, Celine T1 - Post-transcriptional control of gene expression T1 - Post-Transkription Steuerung der Genexpression N2 - Gene expression describes the process of making functional gene products (e.g. proteins or special RNAs) from instructions encoded in the genetic information (e.g. DNA). This process is heavily regulated, allowing cells to produce the appropriate gene products necessary for cell survival, adapting production as necessary for different cell environments. Gene expression is subject to regulation at several levels, including transcription, mRNA degradation, translation and protein degradation. When intact, this system maintains cell homeostasis, keeping the cell alive and adaptable to different environments. Malfunction in the system can result in disease states and cell death. In this dissertation, we explore several aspects of gene expression control by analyzing data from biological experiments. Most of the work following uses a common mathematical model framework based on Markov chain models to test hypotheses, predict system dynamics or elucidate network topology. Our work lies in the intersection between mathematics and biology and showcases the power of statistical data analysis and math modeling for validation and discovery of biological phenomena. N2 - Das „zentrale Dogma der Molekularbiologie“ besagt, dass der Fluss genetischer Information mit der DNS startet, die dann auf die RNS kopiert und in Proteine übersetzt wird (Crick 1970). Dieses System der Informationsübertragung bietet zwei natürliche Eingriffspunkte, an denen Genausprägungen manipuliert werden können -- entweder auf dem Level der mRNS (z.B. durch Kontrolle der Transkriptions- oder mRNS- Degradationsprozesse) oder auf dem Level des Proteins (z.B. durch Kontrolle der Translations- oder Proteindegradationsprozesse). An jedem Eingriffspunkt sind eine Vielzahl unterschiedlicher Prozesse zeitgleich aktiv, um die Konzentrationen von mRNS und Proteinen präzise einzustellen. All diese Prozesse tragen dazu bei, die Zelle intern im stationäzen Zustand zu halten, denn eine Fehlfunktion im System kann zu Krankheitszuständen oder zum Zelltot führen. In dieser Arbeit untersuchen wir verschiedene Aspekte der Kontrolle der Genausprägungs, indem wir Daten biologischer Experimente analysieren. Unsere Arbeit liegt hierbei zwischen den Bereichen der mathematischer Modellierung und der Biologie und zeigt den immensen Nutzen von statistischen Analysemethoden und mathematischer Modellbildung zur Validierung und Neuentdeckung biologischer Phänomene auf. KW - mRNA degradation KW - protein degradation KW - gene expression control KW - mathematical modeling KW - stochastic modeling KW - data analysis and statistics KW - next generation sequencing (NGS) KW - ribosome KW - Datenanalyse und Statistik KW - Regulierung der Genexpression KW - mRNA Degradierung KW - mathematisches Modellierung KW - Proteindegradierung KW - Ribosom KW - stochastische Modellierung Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-102469 ER - TY - JOUR A1 - Bartholomäus, Alexander A1 - Fedyunin, Ivan A1 - Feist, Peter A1 - Sin, Celine A1 - Zhang, Gong A1 - Valleriani, Angelo A1 - Ignatova, Zoya T1 - Bacteria differently regulate mRNA abundance to specifically respond to various stresses JF - Geology N2 - Environmental stress is detrimental to cell viability and requires an adequate reprogramming of cellular activities to maximize cell survival. We present a global analysis of the response of Escherichia coli to acute heat and osmotic stress. We combine deep sequencing of total mRNA and ribosome-protected fragments to provide a genome-wide map of the stress response at transcriptional and translational levels. For each type of stress, we observe a unique subset of genes that shape the stress-specific response. Upon temperature upshift, mRNAs with reduced folding stability up-and downstream of the start codon, and thus with more accessible initiation regions, are translationally favoured. Conversely, osmotic upshift causes a global reduction of highly translated transcripts with high copy numbers, allowing reallocation of translation resources to not degraded and newly synthesized mRNAs. KW - transcription KW - translation KW - deep sequencing KW - Escherichia coli KW - copy numbers Y1 - 2016 U6 - https://doi.org/10.1098/rsta.2015.0069 SN - 1364-503X SN - 1471-2962 VL - 374 PB - Royal Society CY - London ER -