TY - JOUR A1 - Li, Kai A1 - Liu, Xingqi A1 - Herzschuh, Ulrike A1 - Wang, Yongbo T1 - Rapid climate fluctuations over the past millennium: evidence from a lacustrine record of Basomtso Lake, southeastern Tibetan Plateau JF - Scientific reports N2 - Abrupt climate changes and fluctuations over short time scales are superimposed on long-term climate changes. Understanding rapid climate fluctuations at the decadal time scale over the past millennium will enhance our understanding of patterns of climate variability and aid in forecasting climate changes in the future. In this study, climate changes on the southeastern Tibetan Plateau over the past millennium were determined from a 4.82-m-long sediment core from Basomtso Lake. At the centennial time scale, the Medieval Climate Anomaly (MCA), Little Ice Age (LIA) and Current Warm Period (CWP) are distinct in the Basomtso region. Rapid climate fluctuations inferred from five episodes with higher sediment input and likely warmer conditions, as well as seven episodes with lower sediment input and likely colder conditions, were well preserved in our record. These episodes with higher and lower sediment input are characterized by abrupt climate changes and short time durations. Spectral analysis indicates that the climate variations at the centennial scale on the southeastern Tibetan Plateau are influenced by solar activity during the past millennium. Y1 - 2016 U6 - https://doi.org/10.1038/srep24806 SN - 2045-2322 VL - 6 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Tian, Fang A1 - Cao, Xianyong A1 - Dallmeyer, Anne A1 - Ni, Jian A1 - Zhao, Yan A1 - Wang, Yongbo A1 - Herzschuh, Ulrike T1 - Quantitative woody cover reconstructions from eastern continental Asia of the last 22 kyr reveal strong regional peculiarities JF - Quaternary science reviews : the international multidisciplinary research and review journal N2 - We present a calibration-set based on modern pollen and satellite-based Advanced Very High Resolution Radiometer (AVHRR) observations of woody cover (including needleleaved, broadleaved and total tree cover) in eastern continental Asia, which shows good performance under cross-validation with the modern analogue technique (all the coefficients of determination between observed and predicted values are greater than 0.65). The calibration-set is used to reconstruct woody cover from a taxonomically harmonized and temporally standardized fossil pollen dataset (including 274 cores) with 500-year resolution over the last 22 kyr. The spatial range of forest has not noticeably changed in eastern continental Asia during the last 22 kyr, although woody cover has, especially at the margin of the eastern Tibetan Plateau and in the forest-steppe transition area of north-central China. Vegetation was sparse during the LGM in the present forested regions, but woody cover increased markedly at the beginning of the Bolling/Allerod period (B/A; ca. 14.5 ka BP) and again at the beginning of the Holocene (ca. 11.5 ka BP), and is related to the enhanced strength of the East Asian Summer Monsoon. Forest flourished in the mid Holocene (ca. 8 ka BP) possibly due to favourable climatic conditions. In contrast, cover was stable in southern China (high cover) and arid central Asia (very low cover) throughout the investigated period. Forest cover increased in the north-eastern part of China during the Holocene. Comparisons of these regional pollen-based results with simulated forest cover from runs of a global climate model (for 9, 6 and 0 ka BP (ECHAM5/JSBACH similar to 1.125 degrees spatial resolution)) reveal many similarities in temporal change. The Holocene woody cover history of eastern continental Asia is different from that of other regions, likely controlled by different climatic variables, i.e. moisture in eastern continental Asia; temperature in northern Eurasia and North America. (C) 2016 Elsevier Ltd. All rights reserved. KW - Pollen KW - AVHRR KW - Modern analogue technique KW - Quantitative reconstruction KW - East Asian summer monsoon Y1 - 2016 U6 - https://doi.org/10.1016/j.quascirev.2016.02.001 SN - 0277-3791 VL - 137 SP - 33 EP - 44 PB - Elsevier CY - Oxford ER -