TY - JOUR A1 - Zienicke, Egbert A1 - Seehafer, Norbert A1 - Li, B.-W. A1 - Schumacher, Jörg A1 - Politano, H. A1 - Thess, H. T1 - Voltage-driven instability of electrically conducting fluids Y1 - 2003 ER - TY - INPR A1 - Zienicke, Egbert A1 - Seehafer, Norbert A1 - Feudel, Fred T1 - Bifurcations in two-dimensional Rayleigh-Bénard convection N2 - Two-dimensional bouyancy-driven convection in a horizontal fluid layer with stress-free boundary conditions at top and bottom and periodic boundary conditions in the horizontal direction is investigated by means of numerical simulation and bifurcation-analysis techniques. As the bouyancy forces increase, the primary stationary and symmetric convection rolls undergo successive Hopf bifurcations, bifurcations to traveling waves, and phase lockings. We pay attention to symmetry breaking and its connection with the generation of large-scale horizontal flows. Calculations of Lyapunov exponents indicate that at a Rayleigh number of 2.3×105 no temporal chaos is reached yet, but the system moves nonchaotically on a 4-torus in phase space. T3 - NLD Preprints - 42 Y1 - 1997 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-14534 ER - TY - JOUR A1 - Zienicke, Egbert A1 - Seehafer, Norbert A1 - Feudel, Fred T1 - Bifurcations in two-dimensional Rayleigh-Bénard convection Y1 - 1998 ER - TY - BOOK A1 - Zienicke, Egbert A1 - Seehafer, Norbert A1 - Feudel, Fred T1 - Bifurcations in two-dimensional Rayleigh-Bénard convection T3 - Preprint NLD Y1 - 1997 SN - 1432-2935 VL - 42 PB - Univ. Potsdam CY - Potsdam ER - TY - JOUR A1 - Seehafer, Norbert A1 - Zienicke, Egbert A1 - Feudel, Fred T1 - Absence of magnetohydrodynamic activity in the voltage-driven sheet pinch Y1 - 1996 ER - TY - INPR A1 - Seehafer, Norbert A1 - Zienicke, Egbert A1 - Feudel, Fred T1 - Absence of magnetohydrodynamic activity in the voltage-driven sheet pinch N2 - We have numerically studied the bifurcation properties of a sheet pinch with impenetrable stress-free boundaries. An incompressible, electrically conducting fluid with spatially and temporally uniform kinematic viscosity and magnetic diffusivity is confined between planes at x1=0 and 1. Periodic boundary conditions are assumed in the x2 and x3 directions and the magnetofluid is driven by an electric field in the x3 direction, prescribed on the boundary planes. There is a stationary basic state with the fluid at rest and a uniform current J=(0,0,J3). Surprisingly, this basic state proves to be stable and apparently to be the only time-asymptotic state, no matter how strong the applied electric field and irrespective of the other control parameters of the system, namely, the magnetic Prandtl number, the spatial periods L2 and L3 in the x2 and x3 directions, and the mean values B¯2 and B¯3 of the magnetic-field components in these directions. T3 - NLD Preprints - 32 Y1 - 1996 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-14328 ER - TY - BOOK A1 - Seehafer, Norbert A1 - Zienicke, Egbert A1 - Feudel, Fred T1 - Absence of magnetohydrodynamic activity in the voltage-driven sheet T3 - Preprint NLD Y1 - 1996 VL - 32 PB - Univ. CY - Potsdam ER -