TY - JOUR A1 - Egbe, D. A. M. A1 - Ulbricht, C. A1 - Orgis, Thomas A1 - Carbonnier, B. A1 - Kietzke, Thomas A1 - Peip, M. A1 - Metzner, M. A1 - Gericke, M. A1 - Birckner, Eckhard A1 - Pakula, T. A1 - Neher, Dieter A1 - Grumm, U. W. T1 - Odd-even effects and the influence of length and specific positioning of alkoxy side chains on the optical properties of PPE-PPV polymers N2 - This contribution reports the combined influences of odd-even effects and the specific positioning of alkoxy side chains OR1 = (OCn+H-10(2(n+10)+1)) and OR2 = (OCnH2n+1) (with n = 6, 7, 8, 9) on the phenylene-ethynylene and phenylene- vinylene segments, respectively, on the optical properties of hybrid polymers P(n+10)/n of general repeating unit: -Ph-C equivalent to C-Ph-C equivalent to C-Ph-CH=CH-Ph-CH=CH-. For the polymeric materials, visual color impression varies alternatively between orange red (P16/6 and P18/8) and yellow (P17/7 and P19/9) according to the odd and even features of the alkoxy side chains, where odd or even relates to the total number of sp(3)-hybridized atoms within the side chains. This side chain related effect is ascribed to both absorptive and emissive behaviors of the polymers on the basis of photophysical investigations in the bulk. Almost identical thin film absorption spectra were obtained for all four materials; however, the photoluminescence of the odd polymers, P16/6 (lambda(f) = 556 nm) and P18/ 8 (lambda(f) = 614 nm), was red-shifted relative to that of their even counterparts (lambda(f) = 535 nm). Further, the P18/8 maximum at 614 nm can be readily assigned to excimer emission, as evidenced by the largest Stokes shift (5600 cm(- 1)), largest fwhmf-value (3700 cm(-1))(,) and the lowest Phi(f)-value of 24%. The strong pi-pi interchain interaction in P18/8, due to loose alkoxy side chains packing, does not only favor fluorescence quenching but also enable an effective inter- as well as intra-molecular recombination of the generated positive and negative polarons in electrolurninescence, which explains the good EL properties of this polymer irrespective of the solvent used. A voltage-dependent blue shift of the EL spectra of up to 100 nm was observed for P18/8 devices prepared from aromatic solvents. This red to green EL shift as observed with increasing voltage is assigned to conformational changes of the polymer chains with increasing temperature Y1 - 2005 SN - 0897-4756 ER - TY - JOUR A1 - Egbe, D. A. M. A1 - Carbonnier, B. A1 - Paul, E. L. A1 - Muhlbacher, D. A1 - Kietzke, Thomas A1 - Birckner, Eckhard A1 - Neher, Dieter A1 - Grummt, U. W. A1 - Pakula, T. T1 - Diyne-containing PPVs : Solid-state properties and comparison of their photophysical and electrochemical properties with those of their Yne-containing counterparts N2 - Diyne-containing poly(p-phenylene-vinylene)s, 4a-d, of general chemical structure-(Ph-C&3bond; C-C&3bond; C-Ph- CH&3bond; CH-Ph-CH&3bond; CH-)(n), obtained through polycondensation reactions of 1,4-bis(4-formyl-2,5-dioctyloxyphenyl)- buta-1,3-diyne (2) with various 2,5-dialkoxy-p-xylylenebis(diethylphosphonates), 3a-d, are the subject of this report. The polymers exhibit great disparity in their degree of polymerization, n, which might be ascribed to side-chain-related differences in reactivity of the reactive species during the polycondensation process and which led to n-dependent absorption (solution and solid state) and emission (solution) behaviors of the polymers. Polarizing optical microscopy and differential scanning calorimetry are employed to probe their thermal behavior. The structure is investigated by means of wide-angle X-ray diffraction for both isotropic and macroscopically oriented samples. Comparison of photophysical (experimental and theoretical) and electrochemical properties of the polymers with those of their yne- containing counterparts 6a-d [-(Ph-C&3bond; C-Ph-CH&3bond; CH-Ph-CH&3bond; CH-)(n)] has been carried out. Similar photophysical behavior was observed for both types of polymers despite the difference in backbone conjugation pattern. The introduction of a second yne unit in 4 lowers the HOMO and LUMO levels, thereby enhancing the electron affinity of polymers 4 compared to polymers 6. The "wider opening" introduced by the second yne unit facilitates moreover the movement of charges during the electrochemical processes leading to minimal discrepancy, Delta E-g between the optical and electrochemical band gap energies. Polymers 6, in contrast, show significant side-chain-dependent Delta E-g values. Low turn-on voltages between 2 and 3 V and maximal luminous efficiencies between 0.32 and 1.25 cd/A were obtained from LED devices of configuration ITO/PEDOT:PSS/polymer 4/Ca/Al Y1 - 2005 SN - 0024-9297 ER -