TY - JOUR A1 - Pingel, Patrick A1 - Zen, Achmad A1 - Neher, Dieter A1 - Lieberwirth, Ingo A1 - Wegner, Gerhard A1 - Allard, Sybille A1 - Scherf, Ullrich T1 - Unexpectedly high field-effect mobility of a soluble, low molecular weight oligoquaterthiophene fraction with low polydispersity N2 - Layers made from soluble low molecular weight polythiophene PQT-12 with low polydispersity exhibit a highly ordered structure and charge-carrier mobilities of the order of 10(-3) cm(2)/(V s), which we attribute to its proximity to monodispersity. We propose that polydispersity is a decisive factor with regard to structure formation and transport properties of soluble low molecular weight polythiophenes. Y1 - 2009 UR - http://www.springerlink.com/content/100501 U6 - https://doi.org/10.1007/s00339-008-4994-0 SN - 0947-8396 ER - TY - JOUR A1 - Schubert, Marcel A1 - Frisch, Johannes A1 - Allard, Sybille A1 - Preis, Eduard A1 - Scherf, Ullrich A1 - Koch, Norbert A1 - Neher, Dieter T1 - Tuning side chain and main chain order in a prototypical donor-acceptor copolymer BT - implications for optical, electronic, and photovoltaic characteristics JF - Elementary Processes in Organic Photovoltaics N2 - The recent development of donor–acceptor copolymers has led to an enormous improvement in the performance of organic solar cells and organic field-effect transistors. Here we describe the synthesis, detailed characterisation, and application of a series of structurally modified copolymers to investigate fundamental structure–property relationships in this class of conjugated polymers. The interplay between chemical structure and optoelectronic properties is investigated. These are further correlated to the charge transport and solar cell performance, which allows us to link their chemical structure to the observed physical properties. KW - Aggregate states KW - All-polymer heterojunctions KW - Alternating copolymers KW - Ambipolar charge transport KW - Ambipolar materials KW - Backbone modifications KW - Bilayer solar cells KW - Charge separation KW - Conformational disorder KW - Crystalline phases KW - Donor-acceptor copolymers KW - Electron traps KW - Energetic disorder KW - Energy-level alignment KW - Fermi-level alignment KW - Fermi-level pinning KW - Interface dipole KW - Interlayer KW - Intrachain order KW - Intragap states KW - Microscopic morphology KW - Mobility imbalance KW - Mobility relaxation KW - Monte Carlo simulation KW - Multiple trapping model KW - Nonradiative recombination KW - OFET KW - Open-circuit voltage KW - Optoelectronic properties KW - Partially alternating copolymers KW - Photo-CELIV KW - Photocurrent KW - Photovoltaic gap KW - Polymer intermixing KW - Recombination losses KW - Spectral diffusion KW - Statistical copolymers KW - Stille-type cross-coupling KW - Structure-property relationships KW - Time-dependent mobility KW - Time-of-flight (TOF) KW - Transient photocurrent KW - Ultraviolet photoelectron spectroscopy KW - Vacuum-level alignment KW - X-ray photoelectron spectroscopy Y1 - 2016 SN - 978-3-319-28338-8 SN - 978-3-319-28336-4 U6 - https://doi.org/10.1007/978-3-319-28338-8_10 SN - 0065-3195 VL - 272 SP - 243 EP - 265 PB - Springer CY - Berlin ER - TY - JOUR A1 - Sainova, Dessislava A1 - Fujikawa, H. A1 - Scherf, Ullrich A1 - Neher, Dieter T1 - The effect of hole traps on the performance of single layer polymer light emitting diodes Y1 - 1999 ER - TY - JOUR A1 - Inal, Sahika A1 - Koelsch, Jonas D. A1 - Chiappisi, Leonardo A1 - Kraft, Mario A1 - Gutacker, Andrea A1 - Janietz, Dietmar A1 - Scherf, Ullrich A1 - Gradzielski, Michael A1 - Laschewsky, André A1 - Neher, Dieter T1 - Temperature-Regulated Fluorescence Characteristics of Supramolecular Assemblies Formed By a Smart Polymer and a Conjugated Polyelectrolyte JF - MACROMOLECULAR CHEMISTRY AND PHYSICS N2 - Aqueous mixtures of a coumarin-labeled non-ionic thermoresponsive copolymer and a cationic polythiophene exhibit marked changes in their fluorescence properties upon heating. At room temperature, emission from the label is significantly quenched due to energy transfer to the conjugated polyelectrolyte. Heating the mixture reduces the energy-transfer efficiency markedly, resulting in a clearly visible change of the emission color. Although the two macromolecules associate strongly at room temperature, the number of interacting sites is largely reduced upon the phase transition. Crucially, the intermolecular association does not suppress the responsiveness of the smart polymer, meaning that this concept should be applicable to chemo- or bioresponsive polymers with optical read-out, for example, as a sensor device. KW - aqueous solutions KW - conjugated polyelectrolytes KW - fluorescence (or Forster) KW - resonance energy transfer KW - phase transitions KW - thermoresponsive polymers Y1 - 2013 U6 - https://doi.org/10.1002/macp.201200493 SN - 1022-1352 VL - 214 IS - 4 SP - 435 EP - 445 PB - WILEY-V C H VERLAG GMBH CY - WEINHEIM ER - TY - JOUR A1 - Inal, Sahika A1 - Chiappisi, Leonardo A1 - Kölsch, Jonas D. A1 - Kraft, Mario A1 - Appavou, Marie-Sousai A1 - Scherf, Ullrich A1 - Wagner, Manfred A1 - Hansen, Michael Ryan A1 - Gradzielski, Michael A1 - Laschewsky, André A1 - Neher, Dieter T1 - Temperature-regulated fluorescence and association of an Oligo(ethyleneglycol)methacrylate-based copolymer with a conjugated Polyelectrolyte-the effect of solution ionic strength JF - The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces & biophysical chemistry N2 - Aqueous mixtures of a dye-labeled non-ionic thermoresponsive copolymer and a conjugated cationic polyelectrolyte are shown to exhibit characteristic changes in fluorescence properties in response to temperature and to the presence of salts, enabling a double-stimuli responsiveness. In such mixtures at room temperature, i.e., well below the lower critical solution temperature (LCST), the emission of the dye is strongly quenched due to energy transfer to the polycation, pointing to supramolecular interactions between the two macromolecules. Increasing the concentration of salts weakens the interpolymer interactions, the extent of which is simultaneously monitored from the change in the relative emission intensity of the components. When the mixture is heated above its LCST, the transfer efficiency is significantly reduced, signaling a structural reorganization process, however, surprisingly only if the mixture contains salt ions. To elucidate the reasons behind such thermo- and ion-sensitive fluorescence characteristics, we investigate the effect of salts of alkali chlorides, in particular of NaCl, on the association behavior of these macromolecules before and after the polymer phase transition by a combination of UV-vis, fluorescence, and H-1 NMR spectroscopy with light scattering and small-angle neutron scattering measurements. Y1 - 2013 U6 - https://doi.org/10.1021/jp408864s SN - 1520-6106 VL - 117 IS - 46 SP - 14576 EP - 14587 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Yang, Xiao Hui A1 - Jaiser, Frank A1 - Neher, Dieter A1 - Lawson, PaDreyia V. A1 - Brédas, Jean-Luc A1 - Zojer, Egbert A1 - Güntner, Roland A1 - Scanduicci de Freitas, Patricia A1 - Forster, Michael A1 - Scherf, Ullrich T1 - Suppression of the keto-emission in polyfluorene light-emitting diodes : Experiments and models N2 - The spectral characteristics of polyfluorene (PF)-based light-emitting diodes (LEDs) containing a defined low concentration of either keto-defects or of the polymer poly(9.9-octylfuorene-co-benzothiadiazole) (F8BT) are preseneted. Both types of blend layers were tested in different device configurations with respect to the relative and absolute intensities of green blue emission components. It is shown that blending hole-transporting molecules into the emission layer at low concentration or incorporation of a suitable hole-transport layer reduces the green emission contribution in the electroluminescence (EL) spectrum of the PF:F8BT blend, which is similar to what is observed for the keto- containing PF layer. We conclude that the keto-defects in PF homopolymer layers mainly constitute weakly emissive electron traps, in agreement with the results of quantum-mechanical calculations Y1 - 2004 SN - 1616-301X ER - TY - JOUR A1 - Zen, Achmad A1 - Bilge, Askin A1 - Galbrecht, Frank A1 - Alle, Ronald A1 - Meerholz, Klaus A1 - Grenzer, Jörg A1 - Neher, Dieter A1 - Scherf, Ullrich A1 - Farrell, Tony T1 - Solution processable organic field-effect transistors utilizing an alpha,alpha '-dihexylpentathiophene- based swivel cruciform Y1 - 2006 UR - http://pubs.acs.org/doi/full/10.1021/ja0573357 U6 - https://doi.org/10.1021/Ja0573357 ER - TY - JOUR A1 - Landfester, Katharina A1 - Montenegro, Rivelino V. D. A1 - Scherf, Ullrich A1 - Günter, R. A1 - Asawapirom, Udom A1 - Patil, S. A1 - Neher, Dieter A1 - Kietzke, Thomas T1 - Semiconducting polymer nanospheres in aqeous dispersion prepared by a miniemulsion process Y1 - 2002 ER - TY - JOUR A1 - Galbrecht, Frank A1 - Yang, X. H. A1 - Nehls, B. S. A1 - Neher, Dieter A1 - Farrell, Tony A1 - Scherf, Ullrich T1 - Semiconducting polyfluorenes with electrophosphorescent on-chain platinum-salen chromophores N2 - The synthesis of statistical fluorene-type copolymers with on-chain Pt-salen phosphorescent units and their use in electrophosphorescent OLEDs is reported Y1 - 2005 SN - 1359-7345 ER - TY - JOUR A1 - Romanovskii, Y. V. A1 - Bassler, H. A1 - Scherf, Ullrich T1 - Relaxation processes in electronic states of conjugated polymers studied via spectral hole-burning at low temperature N2 - Persistent and transient hole-burning (HB) at 4.2 K have been applied to study the intrinsic properties of electronic excitations of a ladder type pi-conjugated poly(para-phenylene) in solutions. A narrow spectral hole less than I meV wide has been detected. The dependencies of the HB efficiency on the burn dose and wavelength, on doping the samples by electron scavenger are interpreted in terms of a photo reaction related to the two-level systems - specific low energy excitations in amorphous materials. In transient HB an additional hole broadening was observed which stems from the triplet energy transfer under conditions of lack of correlation of site energies of the singlet and triplet states of chromophores. (C) 2003 Elsevier B.V. All rights reserved Y1 - 2004 SN - 0009-2614 ER -