TY - JOUR A1 - Tittel, Joerg A1 - Wiehle, Ines A1 - Wannicke, Nicola A1 - Kampe, Heike A1 - Poerschmann, Juergen A1 - Meier, Jutta A1 - Kamjunke, Norbert T1 - Utilisation of terrestrial carbon by osmotrophic algae N2 - Terrestrial-derived dissolved organic carbon (DOC) contributes significantly to the energetic basis of many aquatic food webs. Although heterotrophic bacteria are generally considered to be the sole consumers of DOC, algae and cyanobacteria of various taxonomic groups are also capable of exploiting this resource. We tested the hypothesis that algae can utilise DOC in the presence of bacteria if organic resources are supplied in intervals by photolysis of recalcitrant DOC. In short-term uptake experiments, we changed irradiation in the range of minutes. As model substrates, polymers of radiolabelled coumaric acid (PCA) were used, which during photolysis are known to release aromatic compounds comparable to terrestrial-derived and refractory DOC. Three cultured freshwater algae readily assimilated PCA photoproducts equivalent to a biomass-specific uptake of 5-60% of the bacterial competitors present. Algal substrate acquisition did not depend on whether PCA was photolysed continuously or in intervals. However, the data show that photoproducts of terrestrial DOC can be a significant resource for osmotrophic algae. In long-term growth experiments, interval light was applied one hour per day. We allowed cultured Chlamydomonas to compete for ambient DOC of low concentration. We found higher abundances of Chlamydomonas when cultures were irradiated intermittently rather than continuously. These data suggest that photolysis of DOC supports algal heterotrophy, and potentially facilitates growth, when light fluctuations are large, as during the diurnal light cycle. We concluded that osmotrophic algae can efficiently convert terrestrial carbon into the biomass of larger organisms of aquatic food webs. Y1 - 2009 UR - http://www.springerlink.com/content/101191 U6 - https://doi.org/10.1007/s00027-008-8121-2 SN - 1015-1621 ER - TY - JOUR A1 - Kamjunke, Norbert A1 - Vogt, Bernhard A1 - Woelfl, Stefan T1 - Trophic interactions of the pelagic ciliate Stentor spp. in North Patagonian lakes N2 - The zooplankton of oligotrophic lakes in North Patagonia is often dominated by mixotrophic ciliates, particularly Stentor amethystinus and Stentor araucanus. Therefore, we tested whether Stentor spp. (i) is an important food for juvenile endemic (Cheirodon australe, Galaxias maculatus, Odontesthes mauleanum, Percichthys trucha) and introduced (Oncorhynchus mykiss) fish species, and (ii) represents a remarkable grazer of bacteria. Ingestion rates of fish estimated by disappearance of Stentor in feeding experiments ranged between 8 (G. maculatus) and 53 (C australe) ciliates per fish and day, and assimilation rates measured by using radioactively labelled Stentor ranged between 3 (P. trucha) and 52 (C australe) ciliates per fish and day. However, although we detected the consumption of Stentor by fish, the daily consumption amounted to at most 0.2% of the fish biomass which can not cover the energy requirement of the fish. Furthermore, the daily consumption was equivalent to a maximum of 1.6% of the Stentor standing stock so that fish predation does not seem to be an important mortality factor for the ciliates. The clearance rate of Stentor sp. on natural bacteria was on average 3.8 mu l cil(-1) h(-1). The daily ingestion (mean 3.9 ngC cil(-1) d(-1)) was about 3.5% of the individual biomass of Stentor sp. Therefore, bacteria ingestion might explain a ciliate growth rate of appr. 1% d(-1), which was about 17% of the photosynthesis of endosymbiotic algae. The maximum density of Stentor sp. in the take could ingest about 1 mu g C L-1 d(-1) bacteria which is only 3% of average bacterial production. Thus, grazing by Stentor sp. does not seem to be a main loss factor for the bacteria. Y1 - 2009 UR - http://www.sciencedirect.com/science/journal/00759511 U6 - https://doi.org/10.1016/j.limno.2008.08.001 SN - 0075-9511 ER - TY - JOUR A1 - Kamjunke, Norbert A1 - Straile, Dietmar A1 - Gaedke, Ursula T1 - Response of heterotrophic bacteria, autotrophic picoplankton and heterotrophic nanoflagellates to re- oligotrophication N2 - We investigated the response of the microbial components of the pelagic food web to re-oligotrophication of large, deep Lake Constance where total phosphorus concentrations during mixing decreased from a maximum of 2.81 mu mol L- 1 in 1979 via 1.87 mu mol L-1 in 1987 to 0.26 mu mol L-1 in 2007. Measurements of heterotrophic bacteria, autotrophic picoplankton (APP) and heterotrophic nanoflagellates (HNF) in 2006 and 2007 were compared to values from 1987 to 1997. We hypothesized that the biomass and seasonal variability of all groups will decrease under more oligotrophic conditions due to reduced resource availability, particularly for APP and HNF but less for the competitively stronger bacteria. Average bacterial biomass between spring and autumn was unrelated to phosphorus, whereas the ratio of bacterial biomass to chlorophyll a concentration increased with decreasing trophy due to declining chlorophyll concentrations. In contrast, a unimodal relationship was found between APP and phosphorus with low biomass at low and high phosphorus concentrations and maximum biomass in between. Average HNF biomass decreased strongly by a factor of 10-30 with decreasing trophy, and chlorophyll-specific HNF biomass was unimodally related to phosphorus. The relative seasonal biomass variability did not change for any group during re-oligotrophication. To conclude, HNF responded much more strongly and bacteria less so than chlorophyll concentrations to oligotrophication, whereas APP exhibited a more complex pattern. Y1 - 2009 UR - http://plankt.oxfordjournals.org/ U6 - https://doi.org/10.1093/plankt/fbp037 SN - 0142-7873 ER -