TY - BOOK A1 - Seehafer, Norbert A1 - Zienicke, Egbert A1 - Feudel, Fred T1 - Absence of magnetohydrodynamic activity in the voltage-driven sheet T3 - Preprint NLD Y1 - 1996 VL - 32 PB - Univ. CY - Potsdam ER - TY - JOUR A1 - Seehafer, Norbert A1 - Zienicke, Egbert A1 - Feudel, Fred T1 - Absence of magnetohydrodynamic activity in the voltage-driven sheet pinch Y1 - 1996 ER - TY - JOUR A1 - Feudel, Fred A1 - RĂ¼diger, Sten A1 - Seehafer, Norbert T1 - Bifurcation phenomena and dynamo effect in electrically conducting fluids N2 - Electrically conducting fluids in motion can act as self-excited dynamos. The magnetic fields of celestial bodies like the Earth and the Sun are generated by such dynamos. Their theory aims at modeling and understanding both the kinematic and dynamic aspects of the underlying processes. Kinematic dynamo models, in which for a prescribed flow the linear induction equation is solved and growth rates of the magnetic field are calculated, have been studied for many decades. But in order to get consistent models and to take into account the back-reaction of the magnetic field on the fluid motion, the full nonlinear system of the magnetohydrodynamic (MHD) equations has to be studied. It is generally accepted that these equations, i.e. the Navier-Stokes equation (NSE) and the induction equation, provide a theoretical basis for the explanation of the dynamo effect. The general idea is that mechanical energy pumped into the fluid by heating or other mechanisms is transferred to the magnetic field by nonlinear interactions. For two special helical flows which are known to be effective kinematic dynamos and which can be produced by appropriate external mechanical forcing, we review the nonlinear dynamo properties found in the framework of the full MHD equations. Specifically, we deal with the ABC flow (named after Arnold, Beltrami and Childress) and the Roberts flow (after G.~O. Roberts). The appearance of generic dynamo effects is demonstrated. Applying special numerical bifurcation-analysis techniques to high-dimensional approximations in Fourier space and varying the Reynolds number (or the strength of the forcing) as the relevant control parameter, qualitative changes in the dynamics are investigated. We follow the bifurcation sequences until chaotic states are reached. The transitions from the primary flows with vanishing magnetic field to dynamo-active states are described in particular detail. In these processes the stagnation points of the flows and their heteroclinic connections play a promoting role for the magnetic field generation. By the example of the Roberts flow we demonstrate how the break up of the heteroclinic lines after the primary bifurcation leads to a complicated intersection of stable and unstable manifolds forming a chaotic web which is in turn correlated with the spatial appearance of the dynamo. Y1 - 2001 ER - TY - JOUR A1 - Feudel, Fred A1 - Seehafer, Norbert A1 - Schmidtmann, Olaf T1 - Bifurcation phenomena of the magnetofluid equations N2 - We report on bifurcation studies for the incompressible magnetohydrodynamic equations in three space dimensions with periodic boundary conditions and a temporally constant external forcing. Fourier representations of velocity, pressure and magnetic field have been used to transform the original partial differential equations into systems of ordinary differential equations (ODE), to which then special numerical methods for the qualitative analysis of systems of ODE have been applied, supplemented by the simulative calculation of solutions for selected initial conditions. In a part of the calculations, in order to reduce the number of modes to be retained, the concept of approximate inertial manifolds has been applied. For varying (increasing from zero) strength of the imposed forcing, or varying Reynolds number, respectively, time-asymptotic states, notably stable stationary solutions, have been traced. A primary non- magnetic steady state loses, in a Hopf bifurcation, stability to a periodic state with a non-vanishing magnetic field, showing the appearance of a generic dynamo effect. From now on the magnetic field is present for all values of the forcing. The Hopf bifurcation is followed by further, symmetry-breaking, bifurcations, leading finally to chaos. We pay particular attention to kinetic and magnetic helicities. The dynamo effect is observed only if the forcing is chosen such that a mean kinetic helicity is generated; otherwise the magnetic field diffuses away, and the time-asymptotic states are non-magnetic, in accordance with traditional kinematic dynamo theory. Y1 - 1996 UR - http://www.mathematicsweb.org/mathematicsweb/show/Index.htt?Issn=03784754 ER - TY - JOUR A1 - Braun, Robert A1 - Feudel, Fred A1 - Seehafer, Norbert T1 - Bifurcations and chaos in an array of forced vortices Y1 - 1997 ER - TY - BOOK A1 - Braun, Robert A1 - Feudel, Fred A1 - Seehafer, Norbert T1 - Bifurcations and chaos in an array of forced vortices T3 - Preprint NLD Y1 - 1997 SN - 1432-2935 VL - 37 PB - Univ. Potsdam CY - Potsdam ER - TY - THES A1 - Feudel, Fred T1 - Bifurcations and pattern formation in spatially extended systems Y1 - 2001 ER - TY - JOUR A1 - Feudel, Fred A1 - Seehafer, Norbert T1 - Bifurcations and pattern formation in two-dimensional Navier-Stokes fluid Y1 - 1995 ER - TY - JOUR A1 - Seehafer, Norbert A1 - Feudel, Fred A1 - Galanti, B. T1 - Bifurcations in a magnetofluid with helical forcing Y1 - 1998 SN - 1-563-47284-8 ER - TY - JOUR A1 - Feudel, Fred A1 - Feudel, Ulrike T1 - Bifurcations in rotating spherical shell convection under the influence of differential rotation JF - Chaos : an interdisciplinary journal of nonlinear science N2 - The bifurcations of thermal convection in a rotating spherical shell heated from the inner sphere and driven by the buoyancy of a central gravity field are studied numerically. This model of spherical Rayleigh-Benard convection describes large-scale convection in planets and in the outer zones of celestial bodies. In this work, the influence of an additionally imposed differential rotation of the inner sphere with respect to the outer one on the heat transfer and, more generally, on the whole bifurcation structure is investigated. In addition to numerical simulations, path-following techniques are applied in order to compute both stable and unstable solution branches. The dynamics and the heat transfer are essentially determined by a global bifurcation, which we have identified as a homoclinic bifurcation that consists of a collision of a stable modulated rotating with an unstable rotating wave. Y1 - 2021 U6 - https://doi.org/10.1063/5.0063113 SN - 1054-1500 SN - 1089-7682 VL - 31 IS - 11 PB - AIP CY - Melville ER -