TY - GEN A1 - Perscheid, Cindy A1 - Faber, Lukas A1 - Kraus, Milena A1 - Arndt, Paul A1 - Janke, Michael A1 - Rehfeldt, Sebastian A1 - Schubotz, Antje A1 - Slosarek, Tamara A1 - Uflacker, Matthias T1 - A tissue-aware gene selection approach for analyzing multi-tissue gene expression data T2 - 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) N2 - High-throughput RNA sequencing (RNAseq) produces large data sets containing expression levels of thousands of genes. The analysis of RNAseq data leads to a better understanding of gene functions and interactions, which eventually helps to study diseases like cancer and develop effective treatments. Large-scale RNAseq expression studies on cancer comprise samples from multiple cancer types and aim to identify their distinct molecular characteristics. Analyzing samples from different cancer types implies analyzing samples from different tissue origin. Such multi-tissue RNAseq data sets require a meaningful analysis that accounts for the inherent tissue-related bias: The identified characteristics must not originate from the differences in tissue types, but from the actual differences in cancer types. However, current analysis procedures do not incorporate that aspect. As a result, we propose to integrate a tissue-awareness into the analysis of multi-tissue RNAseq data. We introduce an extension for gene selection that provides a tissue-wise context for every gene and can be flexibly combined with any existing gene selection approach. We suggest to expand conventional evaluation by additional metrics that are sensitive to the tissue-related bias. Evaluations show that especially low complexity gene selection approaches profit from introducing tissue-awareness. KW - RNAseq KW - gene selection KW - tissue-awareness KW - TCGA KW - GTEx Y1 - 2018 SN - 978-1-5386-5488-0 U6 - https://doi.org/10.1109/BIBM.2018.8621189 SN - 2156-1125 SN - 2156-1133 SP - 2159 EP - 2166 PB - IEEE CY - New York ER - TY - GEN A1 - Hesse, Guenter A1 - Matthies, Christoph A1 - Sinzig, Werner A1 - Uflacker, Matthias T1 - Adding Value by Combining Business and Sensor Data BT - an Industry 4.0 Use Case T2 - Database Systems for Advanced Applications N2 - Industry 4.0 and the Internet of Things are recent developments that have lead to the creation of new kinds of manufacturing data. Linking this new kind of sensor data to traditional business information is crucial for enterprises to take advantage of the data’s full potential. In this paper, we present a demo which allows experiencing this data integration, both vertically between technical and business contexts and horizontally along the value chain. The tool simulates a manufacturing company, continuously producing both business and sensor data, and supports issuing ad-hoc queries that answer specific questions related to the business. In order to adapt to different environments, users can configure sensor characteristics to their needs. KW - Industry 4.0 KW - Internet of Things KW - Data integration Y1 - 2019 SN - 978-3-030-18590-9 SN - 978-3-030-18589-3 U6 - https://doi.org/10.1007/978-3-030-18590-9_80 SN - 0302-9743 SN - 1611-3349 VL - 11448 SP - 528 EP - 532 PB - Springer CY - Cham ER - TY - JOUR A1 - Uflacker, Matthias A1 - Kowark, Thomas A1 - Zeier, Alexander T1 - An instrument for real-time design interaction capture Y1 - 2011 SN - 978-3-642-13756-3 ER - TY - GEN A1 - Serth, Sebastian A1 - Podlesny, Nikolai A1 - Bornstein, Marvin A1 - Lindemann, Jan A1 - Latt, Johanna A1 - Selke, Jan A1 - Schlosser, Rainer A1 - Boissier, Martin A1 - Uflacker, Matthias T1 - An interactive platform to simulate dynamic pricing competition on online marketplaces T2 - 2017 IEEE 21st International Enterprise Distributed Object Computing Conference (EDOC) N2 - E-commerce marketplaces are highly dynamic with constant competition. While this competition is challenging for many merchants, it also provides plenty of opportunities, e.g., by allowing them to automatically adjust prices in order to react to changing market situations. For practitioners however, testing automated pricing strategies is time-consuming and potentially hazardously when done in production. Researchers, on the other side, struggle to study how pricing strategies interact under heavy competition. As a consequence, we built an open continuous time framework to simulate dynamic pricing competition called Price Wars. The microservice-based architecture provides a scalable platform for large competitions with dozens of merchants and a large random stream of consumers. Our platform stores each event in a distributed log. This allows to provide different performance measures enabling users to compare profit and revenue of various repricing strategies in real-time. For researchers, price trajectories are shown which ease evaluating mutual price reactions of competing strategies. Furthermore, merchants can access historical marketplace data and apply machine learning. By providing a set of customizable, artificial merchants, users can easily simulate both simple rule-based strategies as well as sophisticated data-driven strategies using demand learning to optimize their pricing strategies. Y1 - 2017 SN - 978-1-5090-3045-3 U6 - https://doi.org/10.1109/EDOC.2017.17 SN - 2325-6354 SP - 61 EP - 66 PB - Institute of Electrical and Electronics Engineers CY - New York ER - TY - JOUR A1 - Schlosser, Rainer A1 - Walther, Carsten A1 - Boissier, Martin A1 - Uflacker, Matthias T1 - Automated repricing and ordering strategies in competitive markets JF - AI communications : AICOM ; the European journal on artificial intelligence N2 - Merchants on modern e-commerce platforms face a highly competitive environment. They compete against each other using automated dynamic pricing and ordering strategies. Successfully managing both inventory levels as well as offer prices is a challenging task as (i) demand is uncertain, (ii) competitors strategically interact, and (iii) optimized pricing and ordering decisions are mutually dependent. We show how to derive optimized data-driven pricing and ordering strategies which are based on demand learning techniques and efficient dynamic optimization models. We verify the superior performance of our self-adaptive strategies by comparing them to different rule-based as well as data-driven strategies in duopoly and oligopoly settings. Further, to study and to optimize joint dynamic ordering and pricing strategies on online marketplaces, we built an interactive simulation platform. To be both flexible and scalable, the platform has a microservice-based architecture and allows handling dozens of competing merchants and streams of consumers with configurable characteristics. KW - Dynamic pricing KW - inventory management KW - demand learning KW - oligopoly competition KW - e-commerce Y1 - 2019 U6 - https://doi.org/10.3233/AIC-180603 SN - 0921-7126 SN - 1875-8452 VL - 32 IS - 1 SP - 15 EP - 29 PB - IOS Press CY - Amsterdam ER - TY - JOUR A1 - Uflacker, Matthias T1 - Computational analysis of virtual team collaboration in teh early stages of engineering design Y1 - 2010 SN - 978-3-86956-036-6 ER - TY - BOOK A1 - Rana, Kaushik A1 - Mohapatra, Durga Prasad A1 - Sidorova, Julia A1 - Lundberg, Lars A1 - Sköld, Lars A1 - Lopes Grim, Luís Fernando A1 - Sampaio Gradvohl, André Leon A1 - Cremerius, Jonas A1 - Siegert, Simon A1 - Weltzien, Anton von A1 - Baldi, Annika A1 - Klessascheck, Finn A1 - Kalancha, Svitlana A1 - Lichtenstein, Tom A1 - Shaabani, Nuhad A1 - Meinel, Christoph A1 - Friedrich, Tobias A1 - Lenzner, Pascal A1 - Schumann, David A1 - Wiese, Ingmar A1 - Sarna, Nicole A1 - Wiese, Lena A1 - Tashkandi, Araek Sami A1 - van der Walt, Estée A1 - Eloff, Jan H. P. A1 - Schmidt, Christopher A1 - Hügle, Johannes A1 - Horschig, Siegfried A1 - Uflacker, Matthias A1 - Najafi, Pejman A1 - Sapegin, Andrey A1 - Cheng, Feng A1 - Stojanovic, Dragan A1 - Stojnev Ilić, Aleksandra A1 - Djordjevic, Igor A1 - Stojanovic, Natalija A1 - Predic, Bratislav A1 - González-Jiménez, Mario A1 - de Lara, Juan A1 - Mischkewitz, Sven A1 - Kainz, Bernhard A1 - van Hoorn, André A1 - Ferme, Vincenzo A1 - Schulz, Henning A1 - Knigge, Marlene A1 - Hecht, Sonja A1 - Prifti, Loina A1 - Krcmar, Helmut A1 - Fabian, Benjamin A1 - Ermakova, Tatiana A1 - Kelkel, Stefan A1 - Baumann, Annika A1 - Morgenstern, Laura A1 - Plauth, Max A1 - Eberhard, Felix A1 - Wolff, Felix A1 - Polze, Andreas A1 - Cech, Tim A1 - Danz, Noel A1 - Noack, Nele Sina A1 - Pirl, Lukas A1 - Beilharz, Jossekin Jakob A1 - De Oliveira, Roberto C. L. A1 - Soares, Fábio Mendes A1 - Juiz, Carlos A1 - Bermejo, Belen A1 - Mühle, Alexander A1 - Grüner, Andreas A1 - Saxena, Vageesh A1 - Gayvoronskaya, Tatiana A1 - Weyand, Christopher A1 - Krause, Mirko A1 - Frank, Markus A1 - Bischoff, Sebastian A1 - Behrens, Freya A1 - Rückin, Julius A1 - Ziegler, Adrian A1 - Vogel, Thomas A1 - Tran, Chinh A1 - Moser, Irene A1 - Grunske, Lars A1 - Szárnyas, Gábor A1 - Marton, József A1 - Maginecz, János A1 - Varró, Dániel A1 - Antal, János Benjamin ED - Meinel, Christoph ED - Polze, Andreas ED - Beins, Karsten ED - Strotmann, Rolf ED - Seibold, Ulrich ED - Rödszus, Kurt ED - Müller, Jürgen T1 - HPI Future SOC Lab – Proceedings 2018 N2 - The “HPI Future SOC Lab” is a cooperation of the Hasso Plattner Institute (HPI) and industry partners. Its mission is to enable and promote exchange and interaction between the research community and the industry partners. The HPI Future SOC Lab provides researchers with free of charge access to a complete infrastructure of state of the art hard and software. This infrastructure includes components, which might be too expensive for an ordinary research environment, such as servers with up to 64 cores and 2 TB main memory. The offerings address researchers particularly from but not limited to the areas of computer science and business information systems. Main areas of research include cloud computing, parallelization, and In-Memory technologies. This technical report presents results of research projects executed in 2018. Selected projects have presented their results on April 17th and November 14th 2017 at the Future SOC Lab Day events. N2 - Das Future SOC Lab am HPI ist eine Kooperation des Hasso-Plattner-Instituts mit verschiedenen Industriepartnern. Seine Aufgabe ist die Ermöglichung und Förderung des Austausches zwischen Forschungsgemeinschaft und Industrie. Am Lab wird interessierten Wissenschaftler:innen eine Infrastruktur von neuester Hard- und Software kostenfrei für Forschungszwecke zur Verfügung gestellt. Dazu zählen Systeme, die im normalen Hochschulbereich in der Regel nicht zu finanzieren wären, bspw. Server mit bis zu 64 Cores und 2 TB Hauptspeicher. Diese Angebote richten sich insbesondere an Wissenschaftler:innen in den Gebieten Informatik und Wirtschaftsinformatik. Einige der Schwerpunkte sind Cloud Computing, Parallelisierung und In-Memory Technologien. In diesem Technischen Bericht werden die Ergebnisse der Forschungsprojekte des Jahres 2018 vorgestellt. Ausgewählte Projekte stellten ihre Ergebnisse am 17. April und 14. November 2018 im Rahmen des Future SOC Lab Tags vor. T3 - Technische Berichte des Hasso-Plattner-Instituts für Digital Engineering an der Universität Potsdam - 151 KW - Future SOC Lab KW - research projects KW - multicore architectures KW - in-memory technology KW - cloud computing KW - machine learning KW - artifical intelligence KW - Future SOC Lab KW - Forschungsprojekte KW - Multicore Architekturen KW - In-Memory Technologie KW - Cloud Computing KW - maschinelles Lernen KW - künstliche Intelligenz Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-563712 SN - 978-3-86956-547-7 SN - 1613-5652 SN - 2191-1665 IS - 151 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - GEN A1 - Perscheid, Cindy A1 - Uflacker, Matthias T1 - Integrating Biological Context into the Analysis of Gene Expression Data T2 - Distributed Computing and Artificial Intelligence, Special Sessions, 15th International Conference N2 - High-throughput RNA sequencing produces large gene expression datasets whose analysis leads to a better understanding of diseases like cancer. The nature of RNA-Seq data poses challenges to its analysis in terms of its high dimensionality, noise, and complexity of the underlying biological processes. Researchers apply traditional machine learning approaches, e. g. hierarchical clustering, to analyze this data. Until it comes to validation of the results, the analysis is based on the provided data only and completely misses the biological context. However, gene expression data follows particular patterns - the underlying biological processes. In our research, we aim to integrate the available biological knowledge earlier in the analysis process. We want to adapt state-of-the-art data mining algorithms to consider the biological context in their computations and deliver meaningful results for researchers. KW - Gene expression KW - Machine learning KW - Feature selection KW - Association rule mining KW - Biclustering KW - Knowledge bases Y1 - 2019 SN - 978-3-319-99608-0 SN - 978-3-319-99607-3 U6 - https://doi.org/10.1007/978-3-319-99608-0_41 SN - 2194-5357 SN - 2194-5365 VL - 801 SP - 339 EP - 343 PB - Springer CY - Cham ER - TY - JOUR A1 - Perscheid, Cindy A1 - Grasnick, Bastien A1 - Uflacker, Matthias T1 - Integrative Gene Selection on Gene Expression Data BT - Providing Biological Context to Traditional Approaches JF - Journal of Integrative Bioinformatics N2 - The advance of high-throughput RNA-Sequencing techniques enables researchers to analyze the complete gene activity in particular cells. From the insights of such analyses, researchers can identify disease-specific expression profiles, thus understand complex diseases like cancer, and eventually develop effective measures for diagnosis and treatment. The high dimensionality of gene expression data poses challenges to its computational analysis, which is addressed with measures of gene selection. Traditional gene selection approaches base their findings on statistical analyses of the actual expression levels, which implies several drawbacks when it comes to accurately identifying the underlying biological processes. In turn, integrative approaches include curated information on biological processes from external knowledge bases during gene selection, which promises to lead to better interpretability and improved predictive performance. Our work compares the performance of traditional and integrative gene selection approaches. Moreover, we propose a straightforward approach to integrate external knowledge with traditional gene selection approaches. We introduce a framework enabling the automatic external knowledge integration, gene selection, and evaluation. Evaluation results prove our framework to be a useful tool for evaluation and show that integration of external knowledge improves overall analysis results. KW - Gene Expression Data Analysis KW - Integrative Gene Selection KW - Pattern Recognition KW - Prior Knowledge KW - Knowledge Bases Y1 - 2019 U6 - https://doi.org/10.1515/jib-2018-0064 SN - 1613-4516 VL - 16 IS - 1 PB - De Gruyter CY - Berlin ER - TY - GEN A1 - Podlesny, Nikolai Jannik A1 - Kayem, Anne V. D. M. A1 - von Schorlemer, Stephan A1 - Uflacker, Matthias T1 - Minimising Information Loss on Anonymised High Dimensional Data with Greedy In-Memory Processing T2 - Database and Expert Systems Applications, DEXA 2018, PT I N2 - Minimising information loss on anonymised high dimensional data is important for data utility. Syntactic data anonymisation algorithms address this issue by generating datasets that are neither use-case specific nor dependent on runtime specifications. This results in anonymised datasets that can be re-used in different scenarios which is performance efficient. However, syntactic data anonymisation algorithms incur high information loss on high dimensional data, making the data unusable for analytics. In this paper, we propose an optimised exact quasi-identifier identification scheme, based on the notion of k-anonymity, to generate anonymised high dimensional datasets efficiently, and with low information loss. The optimised exact quasi-identifier identification scheme works by identifying and eliminating maximal partial unique column combination (mpUCC) attributes that endanger anonymity. By using in-memory processing to handle the attribute selection procedure, we significantly reduce the processing time required. We evaluated the effectiveness of our proposed approach with an enriched dataset drawn from multiple real-world data sources, and augmented with synthetic values generated in close alignment with the real-world data distributions. Our results indicate that in-memory processing drops attribute selection time for the mpUCC candidates from 400s to 100s, while significantly reducing information loss. In addition, we achieve a time complexity speed-up of O(3(n/3)) approximate to O(1.4422(n)). Y1 - 2018 SN - 978-3-319-98809-2 SN - 978-3-319-98808-5 U6 - https://doi.org/10.1007/978-3-319-98809-2_6 SN - 0302-9743 SN - 1611-3349 VL - 11029 SP - 85 EP - 100 PB - Springer CY - Cham ER -