TY - JOUR A1 - Allan, Eric A1 - Weisser, Wolfgang W. A1 - Fischer, Markus A1 - Schulze, Ernst-Detlef A1 - Weigelt, Alexandra A1 - Roscher, Christiane A1 - Baade, Jussi A1 - Barnard, Romain L. A1 - Bessler, Holger A1 - Buchmann, Nina A1 - Ebeling, Anne A1 - Eisenhauer, Nico A1 - Engels, Christof A1 - Fergus, Alexander J. F. A1 - Gleixner, Gerd A1 - Gubsch, Marlen A1 - Halle, Stefan A1 - Klein, Alexandra Maria A1 - Kertscher, Ilona A1 - Kuu, Annely A1 - Lange, Markus A1 - Le Roux, Xavier A1 - Meyer, Sebastian T. A1 - Migunova, Varvara D. A1 - Milcu, Alexandru A1 - Niklaus, Pascal A. A1 - Oelmann, Yvonne A1 - Pasalic, Esther A1 - Petermann, Jana S. A1 - Poly, Franck A1 - Rottstock, Tanja A1 - Sabais, Alexander C. W. A1 - Scherber, Christoph A1 - Scherer-Lorenzen, Michael A1 - Scheu, Stefan A1 - Steinbeiss, Sibylle A1 - Schwichtenberg, Guido A1 - Temperton, Vicky A1 - Tscharntke, Teja A1 - Voigt, Winfried A1 - Wilcke, Wolfgang A1 - Wirth, Christian A1 - Schmid, Bernhard T1 - A comparison of the strength of biodiversity effects across multiple functions JF - Oecologia N2 - In order to predict which ecosystem functions are most at risk from biodiversity loss, meta-analyses have generalised results from biodiversity experiments over different sites and ecosystem types. In contrast, comparing the strength of biodiversity effects across a large number of ecosystem processes measured in a single experiment permits more direct comparisons. Here, we present an analysis of 418 separate measures of 38 ecosystem processes. Overall, 45 % of processes were significantly affected by plant species richness, suggesting that, while diversity affects a large number of processes not all respond to biodiversity. We therefore compared the strength of plant diversity effects between different categories of ecosystem processes, grouping processes according to the year of measurement, their biogeochemical cycle, trophic level and compartment (above- or belowground) and according to whether they were measures of biodiversity or other ecosystem processes, biotic or abiotic and static or dynamic. Overall, and for several individual processes, we found that biodiversity effects became stronger over time. Measures of the carbon cycle were also affected more strongly by plant species richness than were the measures associated with the nitrogen cycle. Further, we found greater plant species richness effects on measures of biodiversity than on other processes. The differential effects of plant diversity on the various types of ecosystem processes indicate that future research and political effort should shift from a general debate about whether biodiversity loss impairs ecosystem functions to focussing on the specific functions of interest and ways to preserve them individually or in combination. KW - Bottom-up effects KW - Carbon cycling KW - Ecological synthesis KW - Ecosystem processes KW - Grasslands KW - Jena experiment KW - Nitrogen cycling Y1 - 2013 U6 - https://doi.org/10.1007/s00442-012-2589-0 SN - 0029-8549 VL - 173 IS - 1 SP - 223 EP - 237 PB - Springer CY - New York ER - TY - JOUR A1 - Blüthgen, Nico A1 - Dormann, Carsten F. A1 - Prati, Daniel A1 - Klaus, Valentin H. A1 - Kleinebecker, Till A1 - Hoelzel, Norbert A1 - Alt, Fabian A1 - Boch, Steffen A1 - Gockel, Sonja A1 - Hemp, Andreas A1 - Müller, Jörg A1 - Nieschulze, Jens A1 - Renner, Swen C. A1 - Schöning, Ingo A1 - Schumacher, Uta A1 - Socher, Stephanie A. A1 - Wells, Konstans A1 - Birkhofer, Klaus A1 - Buscot, Francois A1 - Oelmann, Yvonne A1 - Rothenwöhrer, Christoph A1 - Scherber, Christoph A1 - Tscharntke, Teja A1 - Weiner, Christiane N. A1 - Fischer, Markus A1 - Kalko, Elisabeth K. V. A1 - Linsenmair, Karl Eduard A1 - Schulze, Ernst-Detlef A1 - Weisser, Wolfgang W. T1 - A quantitative index of land-use intensity in grasslands integrating mowing, grazing and fertilization JF - Basic and applied ecology : Journal of the Gesellschaft für Ökologie N2 - Land use is increasingly recognized as a major driver of biodiversity and ecosystem functioning in many current research projects. In grasslands, land use is often classified by categorical descriptors such as pastures versus meadows or fertilized versus unfertilized sites. However, to account for the quantitative variation of multiple land-use types in heterogeneous landscapes, a quantitative, continuous index of land-use intensity (LUI) is desirable. Here we define such a compound, additive LUI index for managed grasslands including meadows and pastures. The LUI index summarizes the standardized intensity of three components of land use, namely fertilization, mowing, and livestock grazing at each site. We examined the performance of the LUI index to predict selected response variables on up to 150 grassland sites in the Biodiversity Exploratories in three regions in Germany(Alb, Hainich, Schorlheide). We tested the average Ellenberg nitrogen indicator values of the plant community, nitrogen and phosphorus concentration in the aboveground plant biomass, plant-available phosphorus concentration in the top soil, and soil C/N ratio, and the first principle component of these five response variables. The LUI index significantly predicted the principal component of all five response variables, as well as some of the individual responses. Moreover, vascular plant diversity decreased significantly with LUI in two regions (Alb and Hainich). Inter-annual changes in management practice were pronounced from 2006 to 2008, particularly due to variation in grazing intensity. This rendered the selection of the appropriate reference year(s) an important decision for analyses of land-use effects, whereas details in the standardization of the index were of minor importance. We also tested several alternative calculations of a LUI index, but all are strongly linearly correlated to the proposed index. The proposed LUI index reduces the complexity of agricultural practices to a single dimension and may serve as a baseline to test how different groups of organisms and processes respond to land use. In combination with more detailed analyses, this index may help to unravel whether and how land-use intensities, associated disturbance levels or other local or regional influences drive ecological processes. KW - Agro-ecosystems KW - Biodiversity exploratories KW - Grassland management KW - Land-use impacts KW - Livestock density KW - Meadows KW - Nitrogen KW - Pastures Y1 - 2012 U6 - https://doi.org/10.1016/j.baae.2012.04.001 SN - 1439-1791 VL - 13 IS - 3 SP - 207 EP - 220 PB - Elsevier CY - Jena ER - TY - JOUR A1 - Meyer, Sebastian Tobias A1 - Ptacnik, Robert A1 - Hillebrand, Helmut A1 - Bessler, Holger A1 - Buchmann, Nina A1 - Ebeling, Anne A1 - Eisenhauer, Nico A1 - Engels, Christof A1 - Fischer, Markus A1 - Halle, Stefan A1 - Klein, Alexandra-Maria A1 - Oelmann, Yvonne A1 - Roscher, Christiane A1 - Rottstock, Tanja A1 - Scherber, Christoph A1 - Scheu, Stefan A1 - Schmid, Bernhard A1 - Schulze, Ernst-Detlef A1 - Temperton, Vicky M. A1 - Tscharntke, Teja A1 - Voigt, Winfried A1 - Weigelt, Alexandra A1 - Wilcke, Wolfgang A1 - Weisser, Wolfgang W. T1 - Biodiversity-multifunctionality relationships depend on identity and number of measured functions JF - Nature Ecology & Evolution N2 - Biodiversity ensures ecosystem functioning and provisioning of ecosystem services, but it remains unclear how biodiversity-ecosystem multifunctionality relationships depend on the identity and number of functions considered. Here, we demonstrate that ecosystem multifunctionality, based on 82 indicator variables of ecosystem functions in a grassland biodiversity experiment, increases strongly with increasing biodiversity. Analysing subsets of functions showed that the effects of biodiversity on multifunctionality were stronger when more functions were included and that the strength of the biodiversity effects depended on the identity of the functions included. Limits to multifunctionality arose from negative correlations among functions and functions that were not correlated with biodiversity. Our findings underline that the management of ecosystems for the protection of biodiversity cannot be replaced by managing for particular ecosystem functions or services and emphasize the need for specific management to protect biodiversity. More plant species from the experimental pool of 60 species contributed to functioning when more functions were considered. An individual contribution to multifunctionality could be demonstrated for only a fraction of the species. Y1 - 2017 U6 - https://doi.org/10.1038/s41559-017-0391-4 SN - 2397-334X VL - 2 IS - 1 SP - 44 EP - 49 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Gossner, Martin M. A1 - Pasalic, Esther A1 - Lange, Markus A1 - Lange, Patricia A1 - Boch, Steffen A1 - Hessenmöller, Dominik A1 - Müller, Jörg A1 - Socher, Stephanie A. A1 - Fischer, Markus A1 - Schulze, Ernst-Detlef A1 - Weisser, Wolfgang W. T1 - Differential responses of herbivores and herbivory to management in temperate Eeuropean beech JF - PLoS one N2 - Forest management not only affects biodiversity but also might alter ecosystem processes mediated by the organisms, i.e. herbivory the removal of plant biomass by plant-eating insects and other arthropod groups. Aiming at revealing general relationships between forest management and herbivory we investigated aboveground arthropod herbivory in 105 plots dominated by European beech in three different regions in Germany in the sun-exposed canopy of mature beech trees and on beech saplings in the understorey. We separately assessed damage by different guilds of herbivores, i.e. chewing, sucking and scraping herbivores, gall-forming insects and mites, and leaf-mining insects. We asked whether herbivory differs among different forest management regimes (unmanaged, uneven-aged managed, even-aged managed) and among age-classes within even-aged forests. We further tested for consistency of relationships between regions, strata and herbivore guilds. On average, almost 80% of beech leaves showed herbivory damage, and about 6% of leaf area was consumed. Chewing damage was most common, whereas leaf sucking and scraping damage were very rare. Damage was generally greater in the canopy than in the understorey, in particular for chewing and scraping damage, and the occurrence of mines. There was little difference in herbivory among differently managed forests and the effects of management on damage differed among regions, strata and damage types. Covariates such as wood volume, tree density and plant diversity weakly influenced herbivory, and effects differed between herbivory types. We conclude that despite of the relatively low number of species attacking beech; arthropod herbivory on beech is generally high. We further conclude that responses of herbivory to forest management are multifaceted and environmental factors such as forest structure variables affecting in particular microclimatic conditions are more likely to explain the variability in herbivory among beech forest plots. Y1 - 2014 U6 - https://doi.org/10.1371/journal.pone.0104876 SN - 1932-6203 VL - 9 IS - 8 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Meyer, Sebastian T. A1 - Ebeling, Anne A1 - Eisenhauer, Nico A1 - Hertzog, Lionel A1 - Hillebrand, Helmut A1 - Milcu, Alexandru A1 - Pompe, Sven A1 - Abbas, Maike A1 - Bessler, Holger A1 - Buchmann, Nina A1 - De Luca, Enrica A1 - Engels, Christof A1 - Fischer, Markus A1 - Gleixner, Gerd A1 - Hudewenz, Anika A1 - Klein, Alexandra-Maria A1 - de Kroon, Hans A1 - Leimer, Sophia A1 - Loranger, Hannah A1 - Mommer, Liesje A1 - Oelmann, Yvonne A1 - Ravenek, Janneke M. A1 - Roscher, Christiane A1 - Rottstock, Tanja A1 - Scherber, Christoph A1 - Scherer-Lorenzen, Michael A1 - Scheu, Stefan A1 - Schmid, Bernhard A1 - Schulze, Ernst-Detlef A1 - Staudler, Andrea A1 - Strecker, Tanja A1 - Temperton, Vicky A1 - Tscharntke, Teja A1 - Vogel, Anja A1 - Voigt, Winfried A1 - Weigelt, Alexandra A1 - Wilcke, Wolfgang A1 - Weisser, Wolfgang W. T1 - Effects of biodiversity strengthen over time as ecosystem functioning declines at low and increases at high biodiversity JF - Ecosphere : the magazine of the International Ecology University KW - biodiversity ecosystem functioning (BEF) KW - ecosystem processes KW - grassland KW - mechanism KW - plant productivity KW - plant species richness KW - temporal effects KW - trophic interactions Y1 - 2016 U6 - https://doi.org/10.1002/ecs2.1619 SN - 2150-8925 VL - 7 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Birkhofer, Klaus A1 - Schöning, Ingo A1 - Alt, Fabian A1 - Herold, Nadine A1 - Klarner, Bernhard A1 - Maraun, Mark A1 - Marhan, Sven A1 - Oelmann, Yvonne A1 - Wubet, Tesfaye A1 - Yurkov, Andrey A1 - Begerow, Dominik A1 - Berner, Doreen A1 - Buscot, Francois A1 - Daniel, Rolf A1 - Diekötter, Tim A1 - Ehnes, Roswitha B. A1 - Erdmann, Georgia A1 - Fischer, Christiane A1 - Fösel, Baerbel A1 - Groh, Janine A1 - Gutknecht, Jessica A1 - Kandeler, Ellen A1 - Lang, Christa A1 - Lohaus, Gertrud A1 - Meyer, Annabel A1 - Nacke, Heiko A1 - Näther, Astrid A1 - Overmann, Jörg A1 - Polle, Andrea A1 - Pollierer, Melanie M. A1 - Scheu, Stefan A1 - Schloter, Michael A1 - Schulze, Ernst-Detlef A1 - Schulze, Waltraud X. A1 - Weinert, Jan A1 - Weisser, Wolfgang W. A1 - Wolters, Volkmar A1 - Schrumpf, Marion T1 - General relationships between abiotic soil properties and soil biota across spatial scales and different land-use types JF - PLoS one N2 - Very few principles have been unraveled that explain the relationship between soil properties and soil biota across large spatial scales and different land-use types. Here, we seek these general relationships using data from 52 differently managed grassland and forest soils in three study regions spanning a latitudinal gradient in Germany. We hypothesize that, after extraction of variation that is explained by location and land-use type, soil properties still explain significant proportions of variation in the abundance and diversity of soil biota. If the relationships between predictors and soil organisms were analyzed individually for each predictor group, soil properties explained the highest amount of variation in soil biota abundance and diversity, followed by land-use type and sampling location. After extraction of variation that originated from location or land-use, abiotic soil properties explained significant amounts of variation in fungal, meso-and macrofauna, but not in yeast or bacterial biomass or diversity. Nitrate or nitrogen concentration and fungal biomass were positively related, but nitrate concentration was negatively related to the abundances of Collembola and mites and to the myriapod species richness across a range of forest and grassland soils. The species richness of earthworms was positively correlated with clay content of soils independent of sample location and land-use type. Our study indicates that after accounting for heterogeneity resulting from large scale differences among sampling locations and land-use types, soil properties still explain significant proportions of variation in fungal and soil fauna abundance or diversity. However, soil biota was also related to processes that act at larger spatial scales and bacteria or soil yeasts only showed weak relationships to soil properties. We therefore argue that more general relationships between soil properties and soil biota can only be derived from future studies that consider larger spatial scales and different land-use types. Y1 - 2012 U6 - https://doi.org/10.1371/journal.pone.0043292 SN - 1932-6203 VL - 7 IS - 8 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Heinze, Eric A1 - Boch, Steffen A1 - Fischer, Markus A1 - Hessenmöller, Dominik A1 - Klenk, Bernd A1 - Müller, Jörg A1 - Prati, Daniel A1 - Schulze, Ernst-Detlef A1 - Seele, Carolin A1 - Socher, Stephanie A1 - Halle, Stefan T1 - Habitat use of large ungulates in northeastern Germany in relation to forest management JF - Forest ecology and management N2 - Estimating large herbivore density has been a major area of research in recent decades. Previous studies monitoring ungulate density, however, focused mostly on determining animal abundance, and did not interpret animal distribution in relation to habitat parameters. We surveyed large ungulates in the Biodiversity Exploratory Schorfheide-Chorin using faecal pellet group counts. This allowed us to explore the link between relative ungulate abundance, habitat use, and browsing damage on trees in a region with several types of forest, including unharvested and age-class beech forests, as well as age-class pine forests. Our results demonstrate that roe deer and fallow deer relative abundance is negatively correlated with large tree cover, and positively correlated with the cover of small shrubs (Rubus spec., Vaccinium spec.), and winter food supply. Habitat use of roe deer and fallow deer, as estimated by counting faecal pellet groups, revealed a preference for mature pine forests, and avoidance of deciduous forests. This differential habitat use is explained by different distributions of high quality food resources during winter. The response of deer to understory cover differed between roe deer and fallow deer at high cover percentages. The amount of browsing damage we observed on coniferous trees was not consistent with the relative deer abundance. Browsing damage was consistently higher on most deciduous trees, except for beech saplings which sustained less damage when roe deer density was low. Because roe deer is a highly selective feeder, it was reported to affect tree diversity by feeding only on trees with high nutritional value. Consequently, we propose that managing the number of all deer species by hunting is necessary to allow successful forest regeneration. Such an adjustment to deer numbers would need to account for both current tree diversity and alternative food resources. Our findings may be applicable to other forest landscapes in northeastern Germany including mature pine stands and differently harvested deciduous forests. KW - Large ungulates KW - Faecal pellet group count KW - Forest management KW - Browsing damage Y1 - 2011 U6 - https://doi.org/10.1016/j.foreco.2010.10.022 SN - 0378-1127 VL - 261 IS - 2 SP - 288 EP - 296 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Boch, Steffen A1 - Prati, Daniel A1 - Müller, Jörg A1 - Socher, Stephanie A1 - Baumbach, Henryk A1 - Buscot, Francois A1 - Gockel, Sonja A1 - Hemp, Andreas A1 - Hessenmöller, Dominik A1 - Kalko, Elisabeth K. V. A1 - Linsenmair, K. Eduard A1 - Pfeiffer, Simone A1 - Pommer, Ulf A1 - Schöning, Ingo A1 - Schulze, Ernst-Detlef A1 - Seilwinder, Claudia A1 - Weisser, Wolfgang W. A1 - Wells, Konstans A1 - Fischer, Markus T1 - High plant species richness indicates management-related disturbances rather than the conservation status of forests JF - Basic and applied ecology : Journal of the Gesellschaft für Ökologie N2 - There is a wealth of smaller-scale studies on the effects of forest management on plant diversity. However, studies comparing plant species diversity in forests with different management types and intensity, extending over different regions and forest stages, and including detailed information on site conditions are missing. We studied vascular plants on 1500 20 m x 20 m forest plots in three regions of Germany (Schwabische Alb, Hainich-Dun, Schorfheide-Chorin). In all regions, our study plots comprised different management types (unmanaged, selection cutting, deciduous and coniferous age-class forests, which resulted from clear cutting or shelterwood logging), various stand ages, site conditions, and levels of management-related disturbances. We analyzed how overall richness and richness of different plant functional groups (trees, shrubs, herbs, herbaceous species typically growing in forests and herbaceous light-demanding species) responded to the different management types. On average, plant species richness was 13% higher in age-class than in unmanaged forests, and did not differ between deciduous age-class and selection forests. In age-class forests of the Schwabische Alb and Hainich-Dun, coniferous stands had higher species richness than deciduous stands. Among age-class forests, older stands with large quantities of standing biomass were slightly poorer in shrub and light-demanding herb species than younger stands. Among deciduous forests, the richness of herbaceous forest species was generally lower in unmanaged than in managed forests, and it was even 20% lower in unmanaged than in selection forests in Hainich-Dun. Overall, these findings show that disturbances by management generally increase plant species richness. This suggests that total plant species richness is not suited as an indicator for the conservation status of forests, but rather indicates disturbances. KW - Biodiversity Exploratories KW - Coniferous plantations KW - Disturbance KW - Ellenberg indicator values KW - Forest management KW - Selection vs. age-class forests KW - Silviculture KW - Standing biomass KW - Typical forest species KW - Unmanaged vs. managed forests Y1 - 2013 U6 - https://doi.org/10.1016/j.baae.2013.06.001 SN - 1439-1791 VL - 14 IS - 6 SP - 496 EP - 505 PB - Elsevier CY - Jena ER - TY - JOUR A1 - Fischer, Markus A1 - Bossdorf, Oliver A1 - Gockel, Sonja A1 - Haensel, Falk A1 - Hemp, Andreas A1 - Hessenmoeller, Dominik A1 - Korte, Gunnar A1 - Nieschulze, Jens A1 - Pfeiffer, Simone A1 - Prati, Daniel A1 - Renner, Swen A1 - Schoening, Ingo A1 - Schumacher, Uta A1 - Wells, Konstans A1 - Buscot, Francois A1 - Kalko, Elisabeth K. V. A1 - Linsenmair, Karl Eduard A1 - Schulze, Ernst-Detlef A1 - Weisser, Wolfgang W. T1 - Implementing large-scale and long-term functional biodiversity research : the biodiversity exploratories N2 - Functional biodiversity research explores drivers and functional consequences of biodiversity changes Land use change is a major driver of changes of biodiversity and of biogeochemical and biological ecosystem processes and services However, land use effects on genetic and species diversity are well documented only for a few taxa and trophic networks We hardly know how different components of biodiversity and their responses to land use change are interrelated and very little about the simultaneous, and interacting, effects of land use on multiple ecosystem processes and services Moreover, we do not know to what extent land use effects on ecosystem processes and services are mediated by biodiversity change Thus, overall goals are on the one hand to understand the effects of land use on biodiversity and on the other to understand the modifying role of biodiversity change for land-use effects on ecosystem processes, including biogeochemical cycles To comprehensively address these Important questions, we recently established a new large-scale and long-term project for functional biodiversity, the Biodiversity Exploratories (www biodiversity-exploratories de) They comprise a hierarchical set of standardized field plots in three different regions of Germany covering manifold management types and intensities in grasslands and forests They serve as a joint research platform for currently 40 projects involving over 300 people studying various aspects of the relationships between land use biodiversity and ecosystem processes through monitoring, comparative observation and experiments We introduce guiding questions, concept and design of the Biodiversity Exploratories - including main aspects of selection and implementation of field plots and project structure - and we discuss the significance of this approach for further functional biodiversity research This includes the crucial relevance of a common study design encompassing variation in both drivers and outcomes of biodiversity change and ecosystem processes, the interdisciplinary integration of biodiversity and ecosystem researchers, the training of a new generation of integrative biodiversity researchers, and the stimulation of functional biodiversity research in real landscape contexts, in Germany and elsewhere. Y1 - 2010 UR - http://www.sciencedirect.com/science/journal/14391791 U6 - https://doi.org/10.1016/j.baae.2010.07.009 SN - 1439-1791 ER - TY - JOUR A1 - Socher, Stephanie A. A1 - Prati, Daniel A1 - Boch, Steffen A1 - Müller, Jörg A1 - Baumbach, Henryk A1 - Gockel, Sonja A1 - Hemp, Andreas A1 - Schöning, Ingo A1 - Wells, Konstans A1 - Buscot, Francois A1 - Kalko, Elisabeth K. V. A1 - Linsenmair, Karl Eduard A1 - Schulze, Ernst-Detlef A1 - Weisser, Wolfgang W. A1 - Fischer, Markus T1 - Interacting effects of fertilization, mowing and grazing on plant species diversity of 1500 grasslands in Germany differ between regions JF - Basic and applied ecology : Journal of the Gesellschaft für Ökologie N2 - The relationship of different types of grassland use with plant species richness and composition ( functional groups of herbs, legumes, and grasses) has so far been studied at small regional scales or comprising only few components of land use. We comprehensively studied the relationship between abandonment, fertilization, mowing intensity, and grazing by different livestock types on plant diversity and composition of 1514 grassland sites in three regions in North-East, Central and South-West Germany. We further considered environmental site conditions including soil type and topographical situation. Fertilized grasslands showed clearly reduced plant species diversity (-15% plant species richness, -0.1 Shannon diversity on fertilized grasslands plots of 16m(2)) and changed composition (-3% proportion of herb species), grazing had the second largest effects and mowing the smallest ones. Among the grazed sites, the ones grazed by sheep had higher than average species richness (+27%), and the cattle grazed ones lower (-42%). Further, these general results were strongly modulated by interactions between the different components of land use and by regional context: land-use effects differed largely in size and sometimes even in direction between regions. This highlights the importance of comparing different regions and to involve a large number of plots KW - Biodiversity exploratories KW - Functional groups KW - Land use type KW - Livestock type KW - Shannon diversity Y1 - 2013 U6 - https://doi.org/10.1016/j.baae.2012.12.003 SN - 1439-1791 VL - 14 IS - 2 SP - 126 EP - 136 PB - Elsevier CY - Jena ER -