TY - JOUR A1 - Schöller, Markus A1 - Hubrig, Swetlana A1 - Fossati, L. A1 - Carroll, Thorsten Anthony A1 - Briquet, Maryline A1 - Oskinova, Lida A1 - Järvinen, S. A1 - Ilyin, Ilya A1 - Castro, N. A1 - Morel, T. A1 - Langer, N. A1 - Przybilla, N. A1 - Nieva, M. -F. A1 - Kholtygin, A. F. A1 - Sana, H. A1 - Herrero, A. A1 - Barba, R. H. A1 - de Koter, A. T1 - B fields in OB stars (BOB) BT - Concluding the FORS2 observing campaign JF - Astronomy and astrophysics : an international weekly journal N2 - Aims. The B fields in OB stars (BOB) Collaboration is based on an ESO Large Programme to study the occurrence rate, properties, and ultimately the origin of magnetic fields in massive stars. Methods. In the framework of this program, we carried out low-resolution spectropolarimetric observations of a large sample of massive stars using FORS2 installed at the ESO VLT 8m telescope. Results. We determined the magnetic field values with two completely independent reduction and analysis pipelines. Our in-depth study of the magnetic field measurements shows that differences between our two pipelines are usually well within 3 sigma errors. From the 32 observations of 28 OB stars, we were able to monitor the magnetic fields in CPD -57 degrees 3509 and HD164492C, confirm the magnetic field in HD54879, and detect a magnetic field in CPD -62 degrees 2124. We obtain a magnetic field detection rate of 6 +/- 3% for the full sample of 69 OB stars observed with FORS 2 within the BOB program. For the preselected objects with a nu sin i below 60 km s(-1), we obtain a magnetic field detection rate of 5 +/- 5%. We also discuss X-ray properties and multiplicity of the objects in our FORS2 sample with respect to the magnetic field detections. KW - polarization KW - stars: early-type KW - stars: magnetic field KW - stars: massive Y1 - 2017 U6 - https://doi.org/10.1051/0004-6361/201628905 SN - 1432-0746 VL - 599 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Przybilla, Norbert A1 - Fossati, Luca A1 - Hubrig, Swetlana A1 - Nieva, M. -F. A1 - Jaervinen, S. P. A1 - Castro, Norberto A1 - Schoeller, M. A1 - Ilyin, Ilya A1 - Butler, Keith A1 - Schneider, F. R. N. A1 - Oskinova, Lida A1 - Morel, T. A1 - Langer, N. A1 - de Koter, A. T1 - B fields in OB stars (BOB): Detection of a magnetic field in the He-strong star CPD-57 degrees 3509 JF - Organic letters N2 - Methods. Spectropolarimetric observations with FORS2 and HARPSpol are analysed using two independent approaches to quantify the magnetic field strength. A high-S/N FLAMES/GIRAFFE spectrum is analysed using a hybrid non-LTE model atmosphere technique. Comparison with stellar evolution models constrains the fundamental parameters of the star. Results. We obtain a firm detection of a surface averaged longitudinal magnetic field with a maximum amplitude of about 1 kG. Assuming a dipolar configuration of the magnetic field, this implies a dipolar field strength larger than 3.3 kG. Moreover, the large amplitude and fast variation (within about 1 day) of the longitudinal magnetic field implies that CPD-57 degrees 3509 is spinning very fast despite its apparently slow projected rotational velocity. The star should be able to support a centrifugal magnetosphere, yet the spectrum shows no sign of magnetically confined material; in particular, emission in H alpha is not observed. Apparently, the wind is either not strong enough for enough material to accumulate in the magnetosphere to become observable or, alternatively, some leakage process leads to loss of material from the magnetosphere. The quantitative spectroscopic analysis of the star yields an effective temperature and a logarithmic surface gravity of 23 750 +/- 250 K and 4.05 +/- 0.10, respectively, and a surface helium fraction of 0.28 +/- 0.02 by number. The surface abundances of C, N, O, Ne, S, and Ar are compatible with the cosmic abundance standard, whereas Mg, Al, Si, and Fe are depleted by about a factor of 2. This abundance pattern can be understood as the consequence of a fractionated stellar wind. CPD-57 degrees 3509 is one of the most evolved He-strong stars known with an independent age constraint due to its cluster membership. KW - stars: abundances KW - stars: atmospheres KW - stars: evolution KW - stars: magnetic field KW - stars: individual: CPD-57 degrees 3509 KW - stars: massive Y1 - 2016 U6 - https://doi.org/10.1051/0004-6361/201527646 SN - 1432-0746 VL - 587 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Hubrig, Swetlana A1 - Fossati, Luca A1 - Carroll, Thorsten Anthony A1 - Castro, Norberto A1 - Gonzalez, J. F. A1 - Ilyin, Ilya A1 - Przybilla, Norbert A1 - Schoeller, M. A1 - Oskinova, Lida A1 - Morel, T. A1 - Langer, N. A1 - Scholz, Ralf-Dieter A1 - Kharchenko, N. V. A1 - Nieva, M. -F. T1 - B fields in OB stars (BOB): The discovery of a magnetic field in a multiple system in the Trifid nebula, one of the youngest star forming regions JF - Astronomy and astrophysics : an international weekly journal N2 - Aims. Recent magnetic field surveys in O- and B-type stars revealed that about 10% of the core-hydrogen-burning massive stars host large-scale magnetic fields. The physical origin of these fields is highly debated. To identify and model the physical processes responsible for the generation of magnetic fields in massive stars, it is important to establish whether magnetic massive stars are found in very young star-forming regions or whether they are formed in close interacting binary systems. Methods. In the framework of our ESO Large Program, we carried out low-resolution spectropolarimetric observations with FORS 2 in 2013 April of the three most massive central stars in the Trifid nebula, HD 164492A, HD 164492C, and HD 164492D. These observations indicated a strong longitudinal magnetic field of about 500-600 G in the poorly studied component HD 164492C. To confirm this detection, we used HARPS in spectropolarimetric mode on two consecutive nights in 2013 June. Results. Our HARPS observations confirmed the longitudinal magnetic field in HD 164492C. Furthermore, the HARPS observations revealed that HD 164492C cannot be considered as a single star as it possesses one or two companions. The spectral appearance indicates that the primary is most likely of spectral type B1-B1.5 V. Since in both observing nights most spectral lines appear blended, it is currently unclear which components are magnetic. Long-term monitoring using high-resolution spectropolarimetry is necessary to separate the contribution of each component to the magnetic signal. Given the location of the system HD 164492C in one of the youngest star formation regions, this system can be considered as a Rosetta Stone for our understanding of the origin of magnetic fields in massive stars. KW - binaries: close KW - stars: early-type KW - stars: fundamental parameters KW - stars: magnetic field KW - stars: variables: general KW - stars: individual: HD 164492C Y1 - 2014 U6 - https://doi.org/10.1051/0004-6361/201423490 SN - 0004-6361 SN - 1432-0746 VL - 564 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Gvaramadze, V. V. A1 - Chene, A.-N. A1 - Kniazev, A. Y. A1 - Schnurr, O. A1 - Shenar, Tomer A1 - Sander, Andreas Alexander Christoph A1 - Hainich, Rainer A1 - Langer, N. A1 - Hamann, Wolf-Rainer A1 - Chu, Y.-H. A1 - Gruendl, R. A. T1 - Discovery of a new Wolf-Rayet star and a candidate star cluster in the Large Magellanic Cloud with Spitzer JF - Monthly notices of the Royal Astronomical Society N2 - We report the first-ever discovery of a Wolf-Rayet (WR) star in the Large Magellanic Cloud via detection of a circular shell with the Spitzer Space Telescope. Follow-up observations with Gemini-South resolved the central star of the shell into two components separated from each other by a parts per thousand 2 arcsec (or a parts per thousand 0.5 pc in projection). One of these components turns out to be a WN3 star with H and He lines both in emission and absorption (we named it BAT99 3a using the numbering system based on extending the Breysacher et al. catalogue). Spectroscopy of the second component showed that it is a B0 V star. Subsequent spectroscopic observations of BAT99 3a with the du Pont 2.5-m telescope and the Southern African Large Telescope revealed that it is a close, eccentric binary system, and that the absorption lines are associated with an O companion star. We analysed the spectrum of the binary system using the non-LTE Potsdam WR (powr) code, confirming that the WR component is a very hot (a parts per thousand 90 kK) WN star. For this star, we derived a luminosity of log L/ L-aS (TM) = 5.45 and a mass-loss rate of 10(- 5.8) M-aS (TM) yr(- 1), and found that the stellar wind composition is dominated by helium with 20 per cent of hydrogen. Spectroscopy of the shell revealed an He iii region centred on BAT99 3a and having the same angular radius (a parts per thousand 15 arcsec) as the shell. We thereby add a new example to a rare class of high-excitation nebulae photoionized by WR stars. Analysis of the nebular spectrum showed that the shell is composed of unprocessed material, implying that the shell was swept-up from the local interstellar medium. We discuss the physical relationship between the newly identified massive stars and their possible membership of a previously unrecognized star cluster. KW - line: identification KW - binaries: spectroscopic KW - stars: massive KW - stars: Wolf-Rayet KW - ISM: bubbles Y1 - 2014 U6 - https://doi.org/10.1093/mnras/stu909 SN - 0035-8711 SN - 1365-2966 VL - 442 IS - 2 SP - 929 EP - 945 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Gvaramadze, V. V. A1 - Kniazev, A. Y. A1 - Miroshnichenko, A. S. A1 - Berdnikov, Leonid N. A1 - Langer, N. A1 - Stringfellow, G. S. A1 - Todt, Helge Tobias A1 - Hamann, Wolf-Rainer A1 - Grebel, E. K. A1 - Buckley, D. A1 - Crause, L. A1 - Crawford, S. A1 - Gulbis, A. A1 - Hettlage, C. A1 - Hooper, E. A1 - Husser, T. -O. A1 - Kotze, P. A1 - Loaring, N. A1 - Nordsieck, K. H. A1 - O'Donoghue, D. A1 - Pickering, T. A1 - Potter, S. A1 - Colmenero, E. Romero A1 - Vaisanen, P. A1 - Williams, T. A1 - Wolf, M. A1 - Reichart, D. E. A1 - Ivarsen, K. M. A1 - Haislip, J. B. A1 - Nysewander, M. C. A1 - LaCluyze, A. P. T1 - Discovery of two new Galactic candidate luminous blue variables with Wide-field Infrared Survey Explorer JF - Monthly notices of the Royal Astronomical Society N2 - We report the discovery of two new Galactic candidate luminous blue variable (LBV) stars via detection of circular shells (typical of confirmed and candidate LBVs) and follow-up spectroscopy of their central stars. The shells were detected at 22 mu m in the archival data of the Mid-Infrared All Sky Survey carried out with the Wide-field Infrared Survey Explorer (WISE). Follow-up optical spectroscopy of the central stars of the shells conducted with the renewed Southern African Large Telescope (SALT) showed that their spectra are very similar to those of the well-known LBVs P Cygni and AG Car, and the recently discovered candidate LBV MN112, which implies the LBV classification for these stars as well. The LBV classification of both stars is supported by detection of their significant photometric variability: one of them brightened in the R and I bands by 0.68 +/- 0.10 and 0.61 +/- 0.04 mag, respectively, during the last 1318 years, while the second one (known as Hen 3-1383) varies its B, V, R, I and Ks brightnesses by similar or equal to 0.50.9 mag on time-scales from 10 d to decades. We also found significant changes in the spectrum of Hen 3-1383 on a time-scale of similar or equal to 3 months, which provides additional support for the LBV classification of this star. Further spectrophotometric monitoring of both stars is required to firmly prove their LBV status. We discuss a connection between the location of massive stars in the field and their fast rotation, and suggest that the LBV activity of the newly discovered candidate LBVs might be directly related to their possible runaway status. KW - line: identification KW - circumstellar matter KW - stars: emission-line, Be KW - stars: evolution KW - stars: individual: Hen 3-1383 KW - stars: massive Y1 - 2012 U6 - https://doi.org/10.1111/j.1365-2966.2012.20556.x SN - 0035-8711 VL - 421 IS - 4 SP - 3325 EP - 3337 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Hubrig, Swetlana A1 - Schoeller, M. A1 - Ilyin, Ilya A1 - Kharchenko, N. V. A1 - Oskinova, Lida A1 - Langer, N. A1 - Gonzalez, J. F. A1 - Kholtygin, A. F. A1 - Briquet, Maryline T1 - Exploring the origin of magnetic fields in massive stars - II. New magnetic field measurements in cluster and field stars JF - Astronomy and astrophysics : an international weekly journal N2 - Context. Theories on the origin of magnetic fields in massive stars remain poorly developed, because the properties of their magnetic field as function of stellar parameters could not yet be investigated. Additional observations are of utmost importance to constrain the conditions that are conducive to magnetic fields and to determine first trends about their occurrence rate and field strength distribution. Aims. To investigate whether magnetic fields in massive stars are ubiquitous or appear only in stars with a specific spectral classification, certain ages, or in a special environment, we acquired 67 new spectropolarimetric observations for 30 massive stars. Among the observed sample, roughly one third of the stars are probable members of clusters at different ages, whereas the remaining stars are field stars not known to belong to any cluster or association. Methods. Spectropolarimetric observations were obtained during four different nights using the low-resolution spectropolarimetric mode of FOcal Reducer low dispersion Spectrograph (FORS 2) mounted on the 8-m Antu telescope of the VLT. Furthermore, we present a number of follow-up observations carried out with the high-resolution spectropolarimeters SOFIN mounted at the Nordic Optical Telescope (NOT) and HARPS mounted at the ESO 3.6 m between 2008 and 2011. To assess the membership in open clusters and associations, we used astrometric catalogues with the highest quality kinematic and photometric data currently available. Results. The presence of a magnetic field is confirmed in nine stars previously observed with FORS 1/2: HD36879, HD47839, CPD-28 2561, CPD-47 2963, HD93843, HD148937, HD149757, HD328856, and HD164794. New magnetic field detections at a significance level of at least 3 sigma were achieved in five stars: HD92206c, HD93521, HD93632, CPD-46 8221, and HD157857. Among the stars with a detected magnetic field, five stars belong to open clusters with high membership probability. According to previous kinematic studies, five magnetic O-type stars in our sample are candidate runaway stars. KW - polarization KW - stars: early-type KW - stars: kinematics and dynamics KW - stars: magnetic field KW - stars: massive KW - open clusters and associations: general Y1 - 2013 U6 - https://doi.org/10.1051/0004-6361/201220721 SN - 0004-6361 VL - 551 PB - EDP Sciences CY - Les Ulis ER -