TY - JOUR A1 - Soliveres, Santiago A1 - van der Plas, Fons A1 - Manning, Peter A1 - Prati, Daniel A1 - Gossner, Martin M. A1 - Renner, Swen C. A1 - Alt, Fabian A1 - Arndt, Hartmut A1 - Baumgartner, Vanessa A1 - Binkenstein, Julia A1 - Birkhofer, Klaus A1 - Blaser, Stefan A1 - Blüthgen, Nico A1 - Boch, Steffen A1 - Böhm, Stefan A1 - Börschig, Carmen A1 - Buscot, Francois A1 - Diekötter, Tim A1 - Heinze, Johannes A1 - Hölzel, Norbert A1 - Jung, Kirsten A1 - Klaus, Valentin H. A1 - Kleinebecker, Till A1 - Klemmer, Sandra A1 - Krauss, Jochen A1 - Lange, Markus A1 - Morris, E. Kathryn A1 - Müller, Jörg A1 - Oelmann, Yvonne A1 - Overmann, Jörg A1 - Pasalic, Esther A1 - Rillig, Matthias C. A1 - Schaefer, H. Martin A1 - Schloter, Michael A1 - Schmitt, Barbara A1 - Schöning, Ingo A1 - Schrumpf, Marion A1 - Sikorski, Johannes A1 - Socher, Stephanie A. A1 - Solly, Emily F. A1 - Sonnemann, Ilja A1 - Sorkau, Elisabeth A1 - Steckel, Juliane A1 - Steffan-Dewenter, Ingolf A1 - Stempfhuber, Barbara A1 - Tschapka, Marco A1 - Türke, Manfred A1 - Venter, Paul C. A1 - Weiner, Christiane N. A1 - Weisser, Wolfgang W. A1 - Werner, Michael A1 - Westphal, Catrin A1 - Wilcke, Wolfgang A1 - Wolters, Volkmar A1 - Wubet, Tesfaye A1 - Wurst, Susanne A1 - Fischer, Markus A1 - Allan, Eric T1 - Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality JF - Nature : the international weekly journal of science Y1 - 2016 U6 - https://doi.org/10.1038/nature19092 SN - 0028-0836 SN - 1476-4687 VL - 536 SP - 456 EP - + PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Heinze, Johannes T1 - Correction to: Heinze, Johannes: Herbivory by aboveground insects impacts plant root morphological traits. - Plant Ecology. - 221 (2020). - S. 725 - 732 JF - Plant ecology : an international journal Y1 - 2021 U6 - https://doi.org/10.1007/s11258-021-01194-6 SN - 1385-0237 SN - 1573-5052 VL - 223 IS - 115 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Schöpke, Benito A1 - Heinze, Johannes A1 - Pätzig, Marlene A1 - Heinken, Thilo T1 - Do dispersal traits of wetland plant species explain tolerance against isolation effects in naturally fragmented habitats? JF - Plant ecology : an international journal N2 - The effects of habitat fragmentation and isolation on plant species richness have been verified for a wide range of anthropogenically fragmented habitats, but there is currently little information about their effects in naturally small and isolated habitats. We tested whether habitat area, heterogeneity, and isolation affect the richness of wetland vascular plant species in kettle holes, i.e., small glacially created wetlands, in an agricultural landscape of 1 km(2) in NE Germany. We compared fragmentation effects with those of forest fragments in the same landscape window. Since wetland and forest species might differ in their tolerance to isolation, and because isolation effects on plant species may be trait dependent, we asked which key life history traits might foster differences in isolation tolerance between wetland and forest plants. We recorded the flora and vegetation types in 83 isolated sites that contained 81 kettle holes and 25 forest fragments. Overall, the number of wetland species increased with increasing area and heterogeneity, i.e., the number of vegetation types, while area was not a surrogate for heterogeneity in these naturally fragmented systems. Isolation did not influence the number of wetland species but decreased the number of forest species. We also found that seeds of wetland species were on average lighter, more persistent and better adapted to epizoochory, e.g., by waterfowl, than seeds of forest species. Therefore, we suggest that wetland species are more tolerant to isolation than forest species due to their higher dispersal potential in space and time, which may counterbalance the negative effects of isolation. KW - Forest species KW - Habitat fragmentation KW - Isolation KW - Kettle holes KW - Life history traits KW - Wetland species Y1 - 2019 U6 - https://doi.org/10.1007/s11258-019-00955-8 SN - 1385-0237 SN - 1573-5052 VL - 220 IS - 9 SP - 801 EP - 815 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Heinze, Johannes T1 - Herbivory by aboveground insects impacts plant root morphological traits JF - Plant ecology : an international journal N2 - Aboveground herbivory induces physiological responses, like the release of belowground chemical defense and storage of secondary metabolites, as well as physical responses in plants, like increased root biomass production. However, studies on effects of aboveground herbivory on root morphology are scarce and until now no study tested herbivory effects under natural conditions for a large set of plant species. Therefore, in a field experiment on plant-soil interactions, I investigated the effect of aboveground insect herbivory on root morphological traits of 20 grassland plant species. For 9 of the 20 species, all individuals showed shoot damage in the presence of insect herbivores, but no damage in insect herbivore exclusions. In these 9 species root biomass increased and root morphological traits changed under herbivory towards thinner roots with increased specific root surface. In contrast, the remaining species did not differ in the number of individuals damaged, root biomass nor morphological traits with herbivores present vs. absent. The fact that aboveground herbivory resulted in thinner roots with increased specific root surface area for all species in which the herbivore exclusion manipulation altered shoot damage might indicate that plants increase nutrient uptake in response to herbivory. However, more importantly, results provide empirical evidence that aboveground herbivory impacts root morphological traits of plants. As these traits are important for the occupation of soil space, uptake processes, decomposition and interactions with soil biota, results suggest that herbivory-induced changes in root morphology might be of importance for plant-soil feedbacks and plant-plant competition. KW - herbivory KW - root traits KW - specific root length KW - specific root surface KW - area KW - plant-soil feedback KW - competition Y1 - 2020 U6 - https://doi.org/10.1007/s11258-020-01045-w SN - 1385-0237 SN - 1573-5052 VL - 221 IS - 8 SP - 725 EP - 732 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Müller, Jörg A1 - Heinze, Johannes A1 - Joshi, Jasmin Radha A1 - Boch, Steffen A1 - Klaus, Valentin H. A1 - Fischer, Markus A1 - Prati, Daniel T1 - Influence of experimental soil disturbances on the diversity of plants in agricultural grasslands JF - Journal of plant ecology N2 - Disturbance is supposed to play an important role for biodiversity and ecosystem stability as described by the intermediate disturbance hypothesis (IDH), which predicts highest species richness at intermediate levels of disturbances. In this study, we tested the effects of artificial soil disturbances on diversity of annual and perennial vascular plants and bryophytes in a field experiment in 86 agricultural grasslands differing in land use in two regions of Germany. On each grassland, we implemented four treatments: three treatments differing in application time of soil disturbances and one control. One year after experimental disturbance, we recorded vegetation and measured biomass productivity and bare ground. We analysed the disturbance response taking effects of region and land-use-accompanied disturbance regimes into account. Region and land-use type strongly determined plant species richness. Experimental disturbances had small positive effects on the species richness of annuals, but none on perennials or bryophytes. Bare ground was positively related to species richness of bryophytes. However, exceeding the creation of 12% bare ground further disturbance had a detrimental effect on bryophyte species richness, which corresponds to the IDH. As biomass productivity was unaffected by disturbance our results indicate that the disturbance effect on species richness of annuals was not due to decreased overall productivity, but rather due to short-term lowered inter- and intraspecific competition at the newly created microsites. Generally, our results highlight the importance of soil disturbances for species richness of annual plants and bryophytes in agricultural grasslands. However, most grasslands were disturbed naturally or by land-use practices and our additional experimental soil disturbances only had a small short-term effect. Overall, total plant diversity in grasslands seemed to be more limited by the availability of propagules rather than by suitable microsites for germination. Thus, nature conservation efforts to increase grassland diversity should focus on overcoming propagule limitation, for instance by additional sowing of seeds, while the creation of additional open patches by disturbance might only be appropriate where natural disturbances are scarce. KW - annuals KW - bryophytes KW - colonization KW - intermediate disturbance hypothesis KW - microsites Y1 - 2014 U6 - https://doi.org/10.1093/jpe/rtt062 SN - 1752-9921 SN - 1752-993X VL - 7 IS - 6 SP - 509 EP - 517 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Heinze, Johannes A1 - Bergmann, Joana A1 - Rillig, Matthias C. A1 - Joshi, Jasmin Radha T1 - Negative biotic soil-effects enhance biodiversity by restricting potentially dominant plant species in grasslands JF - Perspectives in plant ecology, evolution and systematics N2 - Interactions between soil microorganisms and plants can play a vital role for plant fitness and therefore also for plant community composition and biodiversity. However, little is known about how biotic plant soil interactions influence the local dominance and abundance of plant species and whether specific taxonomic or functional groups of plants are differentially affected by such biotic soil-effects. In two greenhouse experiments, we tested the biotic soil-effects of 33 grassland species differing in individual size and local abundance. We hypothesized that large plants that are not locally dominant (despite their size-related competitive advantage enabling them to potentially outshade competitors) are most strongly limited by negative biotic soil-effects. We sampled soils at the opposite ends of a gradient in land-use intensity in temperate grasslands to account for putative modulating effects of land-use intensity on biotic soil-effects. As hypothesized, large, but non-dominant species (especially grasses) experienced more negative biotic soil-effects compared with small and abundant plant species. Land-use intensity had contrasting effects on grasses and herbs resulting in more negative biotic soil-effects for grasses in less intensively managed grasslands. We conclude that biotic soil-effects contribute to the control of potentially dominant plants and hence enable species coexistence and biodiversity especially in species-rich less intensively managed grasslands. KW - Coexistence mechanisms KW - Plant soil feedbacks KW - Individual size KW - Local plant-abundance KW - Grassland diversity KW - Land-use intensity Y1 - 2015 U6 - https://doi.org/10.1016/j.ppees.2015.03.002 SN - 1433-8319 VL - 17 IS - 3 SP - 227 EP - 235 PB - Elsevier CY - Jena ER - TY - JOUR A1 - Heinze, Johannes A1 - Joshi, Jasmin Radha T1 - Plant-soil feedback effects can be masked by aboveground herbivory under natural field conditions JF - Oecologia N2 - For plants, herbivory and interactions with their surrounding soil ecosystem are crucial factors influencing individual performance and plant-community composition. Until now, research has mostly focused on individual effects of herbivory or plant-soil feedbacks (PSFs) on plant growth and community composition, but few studies have explicitly investigated herbivory in the context of PSFs. These few studies, however, were performed under greenhouse conditions even though PSFs and herbivory may differ between greenhouse and field conditions. Therefore, we performed a field experiment in a grassland, testing the growth responses of three grass species that consistently differ in local abundance, on soils previously conditioned by these species. We tested these PSF effects for the three species both in the presence and in the absence of aboveground herbivores. Without herbivores, the two subdominant species suffered from negative PSF effects. However, in the presence of herbivores and on heterospecific soils, the same two species experienced a significant loss of shoot biomass, whereas, in contrast, enhanced root growth was observed on conspecific soils, resulting in overall neutral PSF effects. The dominant species was not damaged by herbivores and showed overall neutral PSF effects in the field with and without herbivores. Our study provides empirical evidence that negative PSF effects that exist under natural field conditions in grasslands can be overwhelmed by aboveground herbivory. Hence, potential PSF effects might not be detected in the field, because other abiotic and biotic interactions such as aboveground herbivory have stronger effects on plant performance and might therefore mask or override these PSF effects. KW - Herbivores KW - Field experiment KW - Plant-community composition KW - Plant diversity KW - Plant-soil feedback Y1 - 2017 U6 - https://doi.org/10.1007/s00442-017-3997-y SN - 0029-8549 SN - 1432-1939 VL - 186 IS - 1 SP - 235 EP - 246 PB - Springer CY - New York ER - TY - JOUR A1 - Heinze, Johannes A1 - Sitte, Mario A1 - Schindhelm, Anne A1 - Wright, J. A1 - Joshi, Jasmin Radha T1 - Plant-soil feedbacks: a comparative study on the relative importance of soil feedbacks in the greenhouse versus the field JF - Oecologia N2 - Interactions between plants and soil microorganisms influence individual plant performance and thus plant-community composition. Most studies on such plant-soil feedbacks (PSFs) have been performed under controlled greenhouse conditions, whereas no study has directly compared PSFs under greenhouse and natural field conditions. We grew three grass species that differ in local abundance in grassland communities simultaneously in the greenhouse and field on field-collected soils either previously conditioned by these species or by the general grassland community. As soils in grasslands are typically conditioned by mixes of species through the patchy and heterogeneous plant species’ distributions, we additionally compared the effects of species-specific versus non-specific species conditioning on PSFs in natural and greenhouse conditions. In almost all comparisons PSFs differed between the greenhouse and field. In the greenhouse, plant growth in species-specific and non-specific soils resulted in similar effects with neutral PSFs for the most abundant species and positive PSFs for the less abundant species. In contrast, in the field all grass species tested performed best in non-specific plots, whereas species-specific PSFs were neutral for the most abundant and varied for the less abundant species. This indicates a general beneficial effect of plant diversity on PSFs in the field. Controlled greenhouse conditions might provide valuable insights on the nominal effects of soils on plants. However, the PSFs observed in greenhouse conditions may not be the determining drivers in natural plant communities where their effects may be overwhelmed by the diversity of abiotic and biotic above- and belowground interactions in the field. KW - Grassland KW - Plant performance KW - Experimental environment KW - Community assembly KW - Plant diversity Y1 - 2016 U6 - https://doi.org/10.1007/s00442-016-3591-8 SN - 0029-8549 SN - 1432-1939 VL - 181 SP - 559 EP - 569 PB - Springer CY - New York ER - TY - JOUR A1 - Heinze, Johannes A1 - Werner, Tony A1 - Weber, Ewald A1 - Rillig, Matthias C. A1 - Joshi, Jasmin Radha T1 - Soil biota effects on local abundances of three grass species along a land-use gradient JF - Oecologia N2 - Biotic plant-soil interactions and land-use intensity are known to affect plant individual fitness as well as competitiveness and therefore plant-species abundances in communities. Therefore, a link between soil biota and land-use intensity on local abundance of plant species in grasslands can be expected. In two greenhouse experiments, we investigated the effects of soil biota from grassland sites differing in land-use intensity on three grass species that vary in local abundances along this land-use gradient. We were interested in those soil-biota effects that are associated with land-use intensity, and whether these effects act directly or indirectly. Therefore, we grew the three plant species in two separate experiments as single individuals and in mixtures and compared their performance. As single plants, all three grasses showed a similar performance with and without soil biota. In contrast, in mixtures growth of the species in response to the presence or absence of soil biota differed. This resulted in different soil-biota effects that tend to correspond with patterns of species-specific abundances in the field for two of the three species tested. Our results highlight the importance of indirect interactions between plants and soil microorganisms and suggest that combined effects of soil biota and plant-plant interactions are involved in structuring plant communities. In conclusion, our experiments suggest that soil biota may have the potential to alter effects of plant-plant interactions and therefore influence plant-species abundances and diversity in grasslands. KW - Biodiversity KW - Grassland KW - Land-use intensity KW - Community composition KW - Plant-soil feedback Y1 - 2015 U6 - https://doi.org/10.1007/s00442-015-3336-0 SN - 0029-8549 SN - 1432-1939 VL - 179 IS - 1 SP - 249 EP - 259 PB - Springer CY - New York ER - TY - JOUR A1 - Heinze, Johannes A1 - Gensch, Sabine A1 - Weber, Ewald A1 - Joshi, Jasmin Radha T1 - Soil temperature modifies effects of soil biota on plant growth JF - Journal of plant ecology N2 - Aims Plants directly and indirectly interact with many abiotic and biotic soil components. Research so far mostly focused on direct, individual abiotic or biotic effects on plant growth, but only few studies tested the indirect effects of abiotic soil factors on plant growth. Therefore, we investigated how abiotic soil conditions affect plant performance, via changes induced by soil biota. Methods In a full-factorial experiment, we grew the widespread grass Dactylis glomerata either with or without soil biota and investigated the impact of soil temperature, fertility and moisture on the soil biota effects on plant growth. We measured biomass production, root traits and colonization by arbuscular mycorrhizal fungi as well as microbial respiration. Important Findings We found significant interaction effects between abiotic soil conditions and soil biota on plant growth for fertility, but especially for soil temperature, as an increase of 10 degrees C significantly changed the soil biota effects on plant growth from positive to neutral. However, if tested individually, an increase in soil temperature and fertility per se positively affected plant biomass production, whereas soil biota per se did not affect overall plant growth, but both influenced root architecture. By affecting soil microbial activity and root architecture, soil temperature might influence both mutualistic and pathogenic interactions between plants and soil biota. Such soil temperature effects should be considered in soil feedback studies to ensure greater transferability of results from artificial and experimental conditions to natural environmental conditions. KW - plant-soil interaction KW - soil biota KW - abiotic soil factors KW - root traits KW - plant growth Y1 - 2016 U6 - https://doi.org/10.1093/jpe/rtw097 SN - 1752-9921 SN - 1752-993X VL - 10 SP - 808 EP - 821 PB - Oxford Univ. Press CY - Oxford ER -