TY - GEN A1 - Schönemann, Eric A1 - Laschewsky, André A1 - Wischerhoff, Erik A1 - Koc, Julian A1 - Rosenhahn, Axel T1 - Surface modification by polyzwitterions of the sulfabetaine-type, and their resistance to biofouling T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Films of zwitterionic polymers are increasingly explored for conferring fouling resistance to materials. Yet, the structural diversity of polyzwitterions is rather limited so far, and clear structure-property relationships are missing. Therefore, we synthesized a series of new polyzwitterions combining ammonium and sulfate groups in their betaine moieties, so-called poly(sulfabetaine)s. Their chemical structures were varied systematically, the monomers carrying methacrylate, methacrylamide, or styrene moieties as polymerizable groups. High molar mass homopolymers were obtained by free radical polymerization. Although their solubilities in most solvents were very low, brine and lower fluorinated alcohols were effective solvents in most cases. A set of sulfabetaine copolymers containing about 1 mol % (based on the repeat units) of reactive benzophenone methacrylate was prepared, spin-coated onto solid substrates, and photo-cured. The resistance of these films against the nonspecific adsorption by two model proteins (bovine serum albumin—BSA, fibrinogen) was explored, and directly compared with a set of references. The various polyzwitterions reduced protein adsorption strongly compared to films of poly(n-butyl methacrylate) that were used as a negative control. The poly(sulfabetaine)s showed generally even somewhat higher anti-fouling activity than their poly(sulfobetaine) analogues, though detailed efficacies depended on the individual polymer–protein pairs. Best samples approach the excellent performance of a poly(oligo(ethylene oxide) methacrylate) reference. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 919 KW - polyzwitterion KW - sulfabetaine KW - sulfobetaine KW - polymer thin films KW - photo crosslinking KW - C,H insertion crosslinking (CHic) KW - protein adsorption KW - anti-fouling materials Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-442007 SN - 1866-8372 IS - 919 ER - TY - GEN A1 - Niebuur, Bart-Jan A1 - Puchmayr, Jonas A1 - Herold, Christian A1 - Kreuzer, Lucas A1 - Hildebrand, Viet A1 - Müller-Buschbaum, Peter A1 - Laschewsky, André A1 - Papadakis, Christine M. T1 - Polysulfobetaines in aqueous solution and in thin film geometry T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - Polysulfobetaines in aqueous solution show upper critical solution temperature (UCST) behavior. We investigate here the representative of this class of materials, poly (N,N-dimethyl-N-(3-methacrylamidopropyl) ammonio propane sulfonate) (PSPP), with respect to: (i) the dynamics in aqueous solution above the cloud point as function of NaBr concentration; and (ii) the swelling behavior of thin films in water vapor as function of the initial film thickness. For PSPP solutions with a concentration of 5 wt.%, the temperature dependence of the intensity autocorrelation functions is measured with dynamic light scattering as function of molar mass and NaBr concentration (0–8 mM). We found a scaling of behavior for the scattered intensity and dynamic correlation length. The resulting spinodal temperatures showed a maximum at a certain (small) NaBr concentration, which is similar to the behavior of the cloud points measured previously by turbidimetry. The critical exponent of susceptibility depends on NaBr concentration, with a minimum value where the spinodal temperature is maximum and a trend towards the mean-field value of unity with increasing NaBr concentration. In contrast, the critical exponent of the correlation length does not depend on NaBr concentration and is lower than the value of 0.5 predicted by mean-field theory. For PSPP thin films, the swelling behavior was found to depend on film thickness. A film thickness of about 100 nm turns out to be the optimum thickness needed to obtain fast hydration with H 2 O. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 713 KW - polyzwitterions KW - polysulfobetaines KW - dynamic light scattering KW - phase behavior Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-427363 SN - 1866-8372 IS - 713 ER -