TY - JOUR A1 - López-Salas, Nieves A1 - Albero, Josep T1 - CxNy BT - new carbon nitride organic photocatalysts JF - Frontiers in Materials N2 - The search for metal-free and visible light-responsive materials for photocatalytic applications has attracted the interest of not only academics but also the industry in the last decades. Since graphitic carbon nitride (g-C3N4) was first reported as a metal-free photocatalyst, this has been widely investigated in different light-driven reactions. However, the high recombination rate, low electrical conductivity, and lack of photoresponse in most of the visible range have elicited the search for alternatives. In this regard, a broad family of carbon nitride (CxNy) materials was anticipated several decades ago. However, the attention of the researchers in these materials has just been awakened in the last years due to the recent success in the syntheses of some of these materials (i.e., C3N3, C2N, C3N, and C3N5, among others), together with theoretical simulations pointing at the excellent physico-chemical properties (i.e., crystalline structure and chemical morphology, electronic configuration and semiconducting nature, or high refractive index and hardness, among others) and optoelectronic applications of these materials. The performance of CxNy, beyond C3N4, has been barely evaluated in real applications, including energy conversion, storage, and adsorption technologies, and further work must be carried out, especially experimentally, in order to confirm the high expectations raised by simulations and theoretical calculations. Herein, we have summarized the scarce literature related to recent results reporting the synthetic routes, structures, and performance of these materials as photocatalysts. Moreover, the challenges and perspectives at the forefront of this field using CxNy materials are disclosed. We aim to stimulate the research of this new generation of CxNy-based photocatalysts, beyond C3N4, with improved photocatalytic efficiencies by harnessing the striking structural, electronic, and optical properties of this new family of materials. KW - CXNY KW - carbon nitrides KW - C2N KW - C3N KW - C1N1 KW - C3N5 KW - photocatalysis Y1 - 2021 U6 - https://doi.org/10.3389/fmats.2021.772200 SN - 2296-8016 VL - 8 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Lepre, Enrico A1 - Heske, Julian A1 - Nowakowski, Michal A1 - Scoppola, Ernesto A1 - Zizak, Ivo A1 - Heil, Tobias A1 - Kühne, Thomas D. A1 - Antonietti, Markus A1 - Lopez-Salas, Nieves A1 - Albero, Josep T1 - Ni-based electrocatalysts for unconventional CO2 reduction reaction to formic acid JF - Nano energy N2 - Electrochemical reduction stands as an alternative to revalorize CO2. Among the different alternatives, Ni single atoms supported on carbonaceous materials are an appealing catalytic solution due to the low cost and versatility of the support and the optimal usage of Ni and its predicted selectivity and efficiency (ca. 100% towards CO). Herein, we have used noble carbonaceous support derived from cytosine to load Ni subnanometric sites. The large heteroatom content of the support allows the stabilization of up to 11 wt% of Ni without the formation of nanoparticles through a simple impregnation plus calcination approach, where nickel promotes the stabilization of C3NOx frameworks and the oxidative support promotes a high oxidation state of nickel. EXAFS analysis points at nickel single atoms or subnanometric clusters coordinated by oxygen in the material surface. Unlike the wellknown N-coordinated Ni single sites selectivity towards CO2 reduction, O-coordinated-Ni single sites (ca. 7 wt% of Ni) reduced CO2 to CO, but subnanometric clusters (11 wt% of Ni) foster the unprecedented formation of HCOOH with 27% Faradaic efficiency at - 1.4 V. Larger Ni amounts ended up on the formation of NiO nanoparticles and almost 100% selectivity towards hydrogen evolution. KW - CO 2 reduction reaction KW - Noble carbon KW - Ni-O4 electrocatalysts KW - Formic acid Y1 - 2022 U6 - https://doi.org/10.1016/j.nanoen.2022.107191 SN - 2211-2855 SN - 2211-3282 VL - 97 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Kossmann, Janina A1 - Sanchez-Manjavacas, Maria Luz Ortiz A1 - Brandt, Jessica A1 - Heil, Tobias A1 - López-Salas, Nieves A1 - Albero, Josep T1 - Mn(ii) sub-nanometric site stabilization in noble, N-doped carbonaceous materials for electrochemical CO2 reduction JF - Chemical communications : ChemComm / The Royal Society of Chemistry N2 - The preparation of stable and efficient electrocatalysts comprising abundant and non-critical row-materials is of paramount importance for their industrial implementation. Herein, we present a simple synthetic route to prepare Mn(ii) sub-nanometric active sites over a highly N-doped noble carbonaceous support. This support not only promotes a strong stabilization of the Mn(ii) sites, improving its stability against oxidation, but also provides a convenient coordination environment in the Mn(ii) sites able to produce CO, HCOOH and CH3COOH from electrochemical CO2 reduction. Y1 - 2022 U6 - https://doi.org/10.1039/d2cc00585a SN - 1359-7345 SN - 1364-548X VL - 58 IS - 31 SP - 4841 EP - 4844 PB - Royal Society of Chemistry CY - Cambridge ER -