TY - JOUR A1 - Richter, Philipp A1 - Fox, Andrew J. A1 - Wakker, Bart P. A1 - Lehner, Nicolas A1 - Howk, J. Christopher A1 - Bland-Hawthorn, Joss A1 - Ben Bekhti, Nadya A1 - Fechner, Cora T1 - The COS/UVES absorption survey of the magellanic stream - II. Evidence for a complex enrichment history of the stream from the fairall 9 sightline JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - We present a multi-wavelength study of the Magellanic Stream (MS), a massive gaseous structure in the Local Group that is believed to represent material stripped from the Magellanic Clouds. We use ultraviolet, optical and radio data obtained with HST/COS, VLT/UVES, FUSE, GASS, and ATCA to study metal abundances and physical conditions in the Stream toward the quasar Fairall 9. Line absorption in the MS from a large number of metal ions and from molecular hydrogen is detected in up to seven absorption components, indicating the presence of multi-phase gas. From the analysis of unsaturated S II absorption, in combination with a detailed photoionization model, we obtain a surprisingly high alpha abundance in the Stream toward Fairall 9 of [S/H] = -0.30 +/- 0.04 (0.50 solar). This value is five times higher than what is found along other MS sightlines based on similar COS/UVES data sets. In contrast, the measured nitrogen abundance is found to be substantially lower ([N/H] = -1.15 +/- 0.06), implying a very low [N/alpha] ratio of -0.85 dex. The substantial differences in the chemical composition of MS toward Fairall 9 compared to other sightlines point toward a complex enrichment history of the Stream. We favor a scenario, in which the gas toward Fairall 9 was locally enriched with a elements by massive stars and then was separated from the Magellanic Clouds before the delayed nitrogen enrichment from intermediate-mass stars could set in. Our results support (but do not require) the idea that there is a metal-enriched filament in the Stream toward Fairall 9 that originates in the LMC. KW - Galaxy: evolution KW - Galaxy: halo KW - ISM: abundances KW - Magellanic Clouds KW - quasars: absorption lines Y1 - 2013 U6 - https://doi.org/10.1088/0004-637X/772/2/111 SN - 0004-637X VL - 772 IS - 2 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Fox, Andrew J. A1 - Wakker, Bart P. A1 - Barger, Kathleen A. A1 - Hernandez, Audra K. A1 - Richter, Philipp A1 - Lehner, Nicolas A1 - Bland-Hawthorn, Joss A1 - Charlton, Jane C. A1 - Westmeier, Tobias A1 - Thom, Christopher A1 - Tumlinson, Jason A1 - Misawa, Toru A1 - Howk, J. Christopher A1 - Haffner, L. Matthew A1 - Ely, Justin A1 - Rodriguez-Hidalgo, Paola A1 - Kumari, Nimisha T1 - The COS/UVES absorption survey of the magellanic stream. III. Ionization, total mass, and inflow rate onto the milky way JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - Dynamic interactions between the two Magellanic Clouds have flung large quantities of gas into the halo of the Milky Way. The result is a spectacular arrangement of gaseous structures, including the Magellanic Stream, the Magellanic Bridge, and the Leading Arm (collectively referred to as the Magellanic System). In this third paper of a series studying the Magellanic gas in absorption, we analyze the gas ionization level using a sample of 69 Hubble Space Telescope/Cosmic Origins Spectrograph sightlines that pass through or within 30 degrees of the 21 cm emitting regions. We find that 81% (56/69) of the sightlines show UV absorption at Magellanic velocities, indicating that the total cross-section of the Magellanic System is approximate to 11,000 deg(2), or around one-quarter of the entire sky. Using observations of the Si III/Si II ratio together with Cloudy photoionization modeling, we calculate the total gas mass (atomic plus ionized) of the Magellanic System to be approximate to 2.0 x 10(9) M-circle dot (d/55 kpc)(2), with the ionized gas contributing around three times as much mass as the atomic gas. This is larger than the current-day interstellar H I mass of both Magellanic Clouds combined, indicating that they have lost most of their initial gas mass. If the gas in the Magellanic System survives to reach the Galactic disk over its inflow time of similar to 0.5-1.0 Gyr, it will represent an average inflow rate of similar to 3.7-6.7 M-circle dot yr(-1), potentially raising the Galactic star formation rate. However, multiple signs of an evaporative interaction with the hot Galactic corona indicate that the Magellanic gas may not survive its journey to the disk fully intact and will instead add material to (and cool) the corona. KW - Galaxy: evolution KW - Galaxy: halo KW - ISM: abundances KW - Magellanic Clouds KW - quasars: absorption lines Y1 - 2014 U6 - https://doi.org/10.1088/0004-637X/787/2/147 SN - 0004-637X SN - 1538-4357 VL - 787 IS - 2 PB - IOP Publ. Ltd. CY - Bristol ER -