TY - JOUR A1 - Trinh, Christopher Q. A1 - Ellis, Simon C. A1 - Bland-Hawthorn, Joss A1 - Lawrence, Jon S. A1 - Horton, Anthony J. A1 - Leon-Saval, Sergio G. A1 - Shortridge, Keith A1 - Bryant, Julia A1 - Case, Scott A1 - Colless, Matthew A1 - Couch, Warrick A1 - Freeman, Kenneth A1 - Löhmannsröben, Hans-Gerd A1 - Gers, Luke A1 - Glazebrook, Karl A1 - Haynes, Roger A1 - Lee, Steve A1 - O'Byrne, John A1 - Miziarski, Stan A1 - Roth, Martin M. A1 - Schmidt, Brian A1 - Tinney, Christopher G. A1 - Zheng, Jessica T1 - Gnosis - the first instrument to use fiber bragg gratings for OH suppression JF - The astronomical journal N2 - The near-infrared is an important part of the spectrum in astronomy, especially in cosmology because the light from objects in the early universe is redshifted to these wavelengths. However, deep near-infrared observations are extremely difficult to make from ground-based telescopes due to the bright background from the atmosphere. Nearly all of this background comes from the bright and narrow emission lines of atmospheric hydroxyl (OH) molecules. The atmospheric background cannot be easily removed from data because the brightness fluctuates unpredictably on short timescales. The sensitivity of ground-based optical astronomy far exceeds that of near-infrared astronomy because of this long-standing problem. GNOSIS is a prototype astrophotonic instrument that utilizes "OH suppression fibers" consisting of fiber Bragg gratings and photonic lanterns to suppress the 103 brightest atmospheric emission doublets between 1.47 and 1.7 mu m. GNOSIS was commissioned at the 3.9 m Anglo-Australian Telescope with the IRIS2 spectrograph to demonstrate the potential of OH suppression fibers, but may be potentially used with any telescope and spectrograph combination. Unlike previous atmospheric suppression techniques GNOSIS suppresses the lines before dispersion and in a manner that depends purely on wavelength. We present the instrument design and report the results of laboratory and on-sky tests from commissioning. While these tests demonstrated high throughput (approximate to 60%) and excellent suppression of the skylines by the OH suppression fibers, surprisingly GNOSIS produced no significant reduction in the interline background and the sensitivity of GNOSIS+IRIS2 is about the same as IRIS2. It is unclear whether the lack of reduction in the interline background is due to physical sources or systematic errors as the observations are detector noise dominated. OH suppression fibers could potentially impact ground-based astronomy at the level of adaptive optics or greater. However, until a clear reduction in the interline background and the corresponding increasing in sensitivity is demonstrated optimized OH suppression fibers paired with a fiber-fed spectrograph will at least provide a real benefit at low resolving powers. KW - atmospheric effects KW - infrared: diffuse background KW - instrumentation: miscellaneous Y1 - 2013 U6 - https://doi.org/10.1088/0004-6256/145/2/51 SN - 0004-6256 VL - 145 IS - 2 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Richter, Philipp A1 - Fox, Andrew J. A1 - Wakker, Bart P. A1 - Lehner, Nicolas A1 - Howk, J. Christopher A1 - Bland-Hawthorn, Joss A1 - Ben Bekhti, Nadya A1 - Fechner, Cora T1 - The COS/UVES absorption survey of the magellanic stream - II. Evidence for a complex enrichment history of the stream from the fairall 9 sightline JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - We present a multi-wavelength study of the Magellanic Stream (MS), a massive gaseous structure in the Local Group that is believed to represent material stripped from the Magellanic Clouds. We use ultraviolet, optical and radio data obtained with HST/COS, VLT/UVES, FUSE, GASS, and ATCA to study metal abundances and physical conditions in the Stream toward the quasar Fairall 9. Line absorption in the MS from a large number of metal ions and from molecular hydrogen is detected in up to seven absorption components, indicating the presence of multi-phase gas. From the analysis of unsaturated S II absorption, in combination with a detailed photoionization model, we obtain a surprisingly high alpha abundance in the Stream toward Fairall 9 of [S/H] = -0.30 +/- 0.04 (0.50 solar). This value is five times higher than what is found along other MS sightlines based on similar COS/UVES data sets. In contrast, the measured nitrogen abundance is found to be substantially lower ([N/H] = -1.15 +/- 0.06), implying a very low [N/alpha] ratio of -0.85 dex. The substantial differences in the chemical composition of MS toward Fairall 9 compared to other sightlines point toward a complex enrichment history of the Stream. We favor a scenario, in which the gas toward Fairall 9 was locally enriched with a elements by massive stars and then was separated from the Magellanic Clouds before the delayed nitrogen enrichment from intermediate-mass stars could set in. Our results support (but do not require) the idea that there is a metal-enriched filament in the Stream toward Fairall 9 that originates in the LMC. KW - Galaxy: evolution KW - Galaxy: halo KW - ISM: abundances KW - Magellanic Clouds KW - quasars: absorption lines Y1 - 2013 U6 - https://doi.org/10.1088/0004-637X/772/2/111 SN - 0004-637X VL - 772 IS - 2 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Fox, Andrew J. A1 - Wakker, Bart P. A1 - Barger, Kathleen A. A1 - Hernandez, Audra K. A1 - Richter, Philipp A1 - Lehner, Nicolas A1 - Bland-Hawthorn, Joss A1 - Charlton, Jane C. A1 - Westmeier, Tobias A1 - Thom, Christopher A1 - Tumlinson, Jason A1 - Misawa, Toru A1 - Howk, J. Christopher A1 - Haffner, L. Matthew A1 - Ely, Justin A1 - Rodriguez-Hidalgo, Paola A1 - Kumari, Nimisha T1 - The COS/UVES absorption survey of the magellanic stream. III. Ionization, total mass, and inflow rate onto the milky way JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - Dynamic interactions between the two Magellanic Clouds have flung large quantities of gas into the halo of the Milky Way. The result is a spectacular arrangement of gaseous structures, including the Magellanic Stream, the Magellanic Bridge, and the Leading Arm (collectively referred to as the Magellanic System). In this third paper of a series studying the Magellanic gas in absorption, we analyze the gas ionization level using a sample of 69 Hubble Space Telescope/Cosmic Origins Spectrograph sightlines that pass through or within 30 degrees of the 21 cm emitting regions. We find that 81% (56/69) of the sightlines show UV absorption at Magellanic velocities, indicating that the total cross-section of the Magellanic System is approximate to 11,000 deg(2), or around one-quarter of the entire sky. Using observations of the Si III/Si II ratio together with Cloudy photoionization modeling, we calculate the total gas mass (atomic plus ionized) of the Magellanic System to be approximate to 2.0 x 10(9) M-circle dot (d/55 kpc)(2), with the ionized gas contributing around three times as much mass as the atomic gas. This is larger than the current-day interstellar H I mass of both Magellanic Clouds combined, indicating that they have lost most of their initial gas mass. If the gas in the Magellanic System survives to reach the Galactic disk over its inflow time of similar to 0.5-1.0 Gyr, it will represent an average inflow rate of similar to 3.7-6.7 M-circle dot yr(-1), potentially raising the Galactic star formation rate. However, multiple signs of an evaporative interaction with the hot Galactic corona indicate that the Magellanic gas may not survive its journey to the disk fully intact and will instead add material to (and cool) the corona. KW - Galaxy: evolution KW - Galaxy: halo KW - ISM: abundances KW - Magellanic Clouds KW - quasars: absorption lines Y1 - 2014 U6 - https://doi.org/10.1088/0004-637X/787/2/147 SN - 0004-637X SN - 1538-4357 VL - 787 IS - 2 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Fox, Andrew J. A1 - Richter, Philipp A1 - Wakker, Bart P. A1 - Lehner, Nicolas A1 - Howk, J. Christopher A1 - Ben Bekhti, Nadya A1 - Bland-Hawthorn, Joss A1 - Lucas, Stephen T1 - The COS/UVES absorption survey of the magellanic stream - I. One-tenth solar abundances along the body of the stream JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - The Magellanic Stream (MS) is a massive and extended tail of multi-phase gas stripped out of the Magellanic Clouds and interacting with the Galactic halo. In this first paper of an ongoing program to study the Stream in absorption, we present a chemical abundance analysis based on HST/COS and VLT/UVES spectra of four active galactic nuclei (RBS 144, NGC 7714, PHL 2525, and HE 0056-3622) lying behind the MS. Two of these sightlines yield good MS metallicity measurements: toward RBS 144 we measure a low MS metallicity of [S/H] = [S II/H I] = -1.13 +/- 0.16 while toward NGC 7714 we measure [O/H] = [O I/H I] = -1.24 +/- 0.20. Taken together with the published MS metallicity toward NGC 7469, these measurements indicate a uniform abundance of approximate to 0.1 solar along the main body of the Stream. This provides strong support to a scenario in which most of the Stream was tidally stripped from the SMC approximate to 1.5-2.5 Gyr ago (a time at which the SMC had a metallicity of approximate to 0.1 solar), as predicted by several N-body simulations. However, in Paper II of this series, we report a much higher metallicity (S/H = 0.5 solar) in the inner Stream toward Fairall 9, a direction sampling a filament of the MS that Nidever et al. claim can be traced kinematically to the Large Magellanic Cloud, not the Small Magellanic Cloud. This shows that the bifurcation of the Stream is evident in its metal enrichment, as well as its spatial extent and kinematics. Finally we measure a similar low metallicity [O/H] = [O I/H I] = -1.03 +/- 0.18 in the v(LSR) = 150 km s(-1) cloud toward HE 0056-3622, which belongs to a population of anomalous velocity clouds near the south Galactic pole. This suggests these clouds are associated with the Stream or more distant structures (possibly the Sculptor Group, which lies in this direction at the same velocity), rather than tracing foreground Galactic material. KW - Galaxy: evolution KW - Galaxy: halo KW - ISM: abundances KW - Magellanic Clouds KW - ultraviolet: ISM Y1 - 2013 U6 - https://doi.org/10.1088/0004-637X/772/2/110 SN - 0004-637X VL - 772 IS - 2 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Ellis, S. C. A1 - Bland-Hawthorn, Joss A1 - Lawrence, J. A1 - Horton, A. J. A1 - Trinh, C. A1 - Leon-Saval, S. G. A1 - Shortridge, K. A1 - Bryant, J. A1 - Case, S. A1 - Colless, M. A1 - Couch, W. A1 - Freeman, K. A1 - Gers, L. A1 - Glazebrook, K. A1 - Haynes, R. A1 - Lee, S. A1 - Löhmannsröben, Hans-Gerd A1 - O'Byrne, J. A1 - Miziarski, S. A1 - Roth, M. A1 - Schmidt, B. A1 - Tinney, C. G. A1 - Zheng, J. T1 - Suppression of the near-infrared OH night-sky lines with fibre Bragg gratings - first results JF - Monthly notices of the Royal Astronomical Society N2 - The background noise between 1 and 1.8 ?mu m in ground-based instruments is dominated by atmospheric emission from hydroxyl molecules. We have built and commissioned a new instrument, the Gemini Near-infrared OH Suppression Integral Field Unit (IFU) System (GNOSIS), which suppresses 103 OH doublets between 1.47 and 1.7?mu m by a factor of 1000 with a resolving power of 10?000. We present the first results from the commissioning of GNOSIS using the IRIS2 spectrograph at the Anglo-Australian Telescope. We present measurements of sensitivity, background and throughput. The combined throughput of the GNOSIS fore-optics, grating unit and relay optics is 36?per cent, but this could be improved to 46?per cent with a more optimal design. We measure strong suppression of the OH lines, confirming that OH suppression with fibre Bragg gratings will be a powerful technology for low-resolution spectroscopy. The integrated OH suppressed background between 1.5 and 1.7 mu m is reduced by a factor of 9 compared to a control spectrum using the same system without suppression. The potential of low-resolution OH-suppressed spectroscopy is illustrated with example observations of Seyfert galaxies and a low-mass star. The GNOSIS background is dominated by detector dark current below 1.67 mu m and by thermal emission above 1.67 mu m. After subtracting these, we detect an unidentified residual interline component of 860 +/- 210 photons s-1 m-2?arcsec-2?mu m-1, comparable to previous measurements. This component is equally bright in the suppressed and control spectra. We have investigated the possible source of the interline component, but were unable to discriminate between a possible instrumental artefact and intrinsic atmospheric emission. Resolving the source of this emission is crucial for the design of fully optimized OH suppression spectrographs. The next-generation OH suppression spectrograph will be focused on resolving the source of the interline component, taking advantage of better optimization for a fibre Bragg grating feed incorporating refinements of design based on our findings from GNOSIS. We quantify the necessary improvements for an optimal OH suppressing fibre spectrograph design. KW - atmospheric effects KW - instrumentation: miscellaneous KW - infrared: general Y1 - 2012 U6 - https://doi.org/10.1111/j.1365-2966.2012.21602.x SN - 0035-8711 VL - 425 IS - 3 SP - 1682 EP - 1695 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Bland-Hawthorn, Joss A1 - Ellis, S. C. A1 - Leon-Saval, S. G. A1 - Haynes, R. A1 - Roth, Martin M. A1 - Löhmannsröben, Hans-Gerd A1 - Horton, A. J. A1 - Cuby, J. -G. A1 - Birks, T. A. A1 - Lawrence, J. S. A1 - Gillingham, P. A1 - Ryder, S. D. A1 - Trinh, C. T1 - A complex multi-notch astronomical filter to suppress the bright infrared sky JF - Nature Communications N2 - A long-standing and profound problem in astronomy is the difficulty in obtaining deep near-infrared observations due to the extreme brightness and variability of the night sky at these wavelengths. A solution to this problem is crucial if we are to obtain the deepest possible observations of the early Universe, as redshifted starlight from distant galaxies appears at these wavelengths. The atmospheric emission between 1,000 and 1,800 nm arises almost entirely from a forest of extremely bright, very narrow hydroxyl emission lines that varies on timescales of minutes. The astronomical community has long envisaged the prospect of selectively removing these lines, while retaining high throughput between them. Here we demonstrate such a filter for the first time, presenting results from the first on-sky tests. Its use on current 8 m telescopes and future 30 m telescopes will open up many new research avenues in the years to come. Y1 - 2011 U6 - https://doi.org/10.1038/ncomms1584 SN - 2041-1723 VL - 2 IS - 50 PB - Nature Publ. Group CY - London ER -