TY - JOUR A1 - Gudipudi, Ramana Venkata A1 - Lüdeke, Matthias K. B. A1 - Rybski, Diego A1 - Kropp, Jürgen T1 - Benchmarking urban eco-efficiency and urbanites' perception JF - Cities N2 - Urbanization as an inexorable global trend stresses the need to identify cities which are eco-efficient. These cities enable socioeconomic development with lower environmental burden, both being multidimensional concepts. Based on this approach, we benchmark 88 European cities using (i) an advanced version of regression residual ranking and (ii) Data Envelopment Analysis (DEA). Our results show that Stockholm, Munich and Oslo perform well irrespective of the benchmarking method. Furthermore, our results indicate that larger European cities are eco-efficient given the socioeconomic benefits they offer compared to smaller cities. In addition, we analyze correlations between a subjective public perception ranking and our objective eco-efficiency rankings for a subset of 45 cities. This exercise revealed three insights: (1) public perception about quality of life in a city is not merely confined to the socioeconomic well-being but rather to its combination with a lower environmental burden; (2) public perception correlates well with both formal ranking outcomes, corroborating the choice of variables; and (3) the advanced regression residual method appears to be more adequate to fit the urbanites' perception ranking (correlation coefficient about 0.6). This can be interpreted as an indication that urbanites' perception reflects the typical eco-efficiency performance and is less influenced by exceptionally performing cities (in the latter case, DEA should have better correlation coefficient). This study highlights that the socioeconomic growth in cities should not be environmentally detrimental as this might lead to significant discontent regarding perceived quality of urban life. KW - Eco-efficiency KW - City benchmarking KW - Sustainable urban development KW - Urban metabolism KW - Public perception KW - DEA KW - OLS ranking Y1 - 2018 U6 - https://doi.org/10.1016/j.cities.2017.11.009 SN - 0264-2751 SN - 1873-6084 VL - 74 SP - 109 EP - 118 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Weng, Wei A1 - Lüdeke, Matthias K. B. A1 - Zemp, Delphine Clara A1 - Lakes, Tobia A1 - Kropp, Jürgen T1 - Aerial and surface rivers BT - downwind impacts on water availability from land use changes in Amazonia JF - Hydrology and earth system sciences : HESS N2 - The abundant evapotranspiration provided by the Amazon forests is an important component of the hydrological cycle, both regionally and globally. Since the last century, deforestation and expanding agricultural activities have been changing the ecosystem and its provision of moisture to the atmosphere. However, it remains uncertain how the ongoing land use change will influence rainfall, runoff, and water availability as findings from previous studies differ. Using moisture tracking experiments based on observational data, we provide a spatially detailed analysis recognizing potential teleconnection between source and sink regions of atmospheric moisture. We apply land use scenarios in upwind moisture sources and quantify the corresponding rainfall and runoff changes in downwind moisture sinks. We find spatially varying responses of water regimes to land use changes, which may explain the diverse results from previous studies. Parts of the Peruvian Amazon and western Bolivia are identified as the sink areas most sensitive to land use change in the Amazon and we highlight the current water stress by Amazonian land use change on these areas in terms of the water availability. Furthermore, we also identify the influential source areas where land use change may considerably reduce a given target sink's water reception (from our example of the Ucayali River basin outlet, rainfall by 5–12 % and runoff by 19–50 % according to scenarios). Sensitive sinks and influential sources are therefore suggested as hotspots for achieving sustainable land–water management. Y1 - 2018 U6 - https://doi.org/10.5194/hess-22-911-2018 SN - 1027-5606 SN - 1607-7938 VL - 22 IS - 1 SP - 911 EP - 927 PB - Copernicus CY - Göttingen ER -