TY - JOUR A1 - Abdrakhmatov, Kanatbek E. A1 - Walker, R. T. A1 - Campbell, G. E. A1 - Carr, A. S. A1 - Elliott, A. A1 - Hillemann, Christian A1 - Hollingsworth, J. A1 - Landgraf, Angela A1 - Mackenzie, D. A1 - Mukambayev, A. A1 - Rizza, M. A1 - Sloan, R. A. T1 - Multisegment rupture in the 11 July 1889 Chilik earthquake (M-w 8.0-8.3), Kazakh Tien Shan, interpreted from remote sensing, field survey, and paleoseismic trenching JF - Journal of geophysical research : Solid earth N2 - The 11 July 1889 Chilik earthquake (M-w 8.0-8.3) forms part of a remarkable sequence of large earthquakes in the late nineteenth and early twentieth centuries in the northern Tien Shan. Despite its importance, the source of the 1889 earthquake remains unknown, though the macroseismic epicenter is sited in the Chilik valley, similar to 100 km southeast of Almaty, Kazakhstan (similar to 2 million population). Several short fault segments that have been inferred to have ruptured in 1889 are too short on their own to account for the estimated magnitude. In this paper we perform detailed surveying and trenching of the similar to 30 km long Saty fault, one of the previously inferred sources, and find that it was formed in a single earthquake within the last 700 years, involving surface slip of up to 10 m. The scarp-forming event, likely to be the 1889 earthquake, was the only surface-rupturing event for at least 5000 years and potentially for much longer. From satellite imagery we extend the mapped length of fresh scarps within the 1889 epicentral zone to a total of similar to 175 km, which we also suggest as candidate ruptures from the 1889 earthquake. The 175 km of rupture involves conjugate oblique left-lateral and right-lateral slip on three separate faults, with step overs of several kilometers between them. All three faults were essentially invisible in the Holocene geomorphology prior to the last slip. The recurrence interval between large earthquakes on any of these faults, and presumably on other faults of the Tien Shan, may be longer than the timescale over which the landscape is reset, providing a challenge for delineating sources of future hazard. Y1 - 2016 U6 - https://doi.org/10.1002/2015JB012763 SN - 2169-9313 SN - 2169-9356 VL - 121 SP - 4615 EP - 4640 PB - American Geophysical Union CY - Washington ER - TY - GEN A1 - Arnous, Ahmad A1 - Zeckra, Martin A1 - Venerdini, Agostina A1 - Alvarado, Patricia A1 - Arrowsmith, Ramón A1 - Guillemoteau, Julien A1 - Landgraf, Angela A1 - Gutiérrez, Adolfo Antonio A1 - Strecker, Manfred T1 - Neotectonic Activity in the Low-Strain Broken Foreland (Santa Bárbara System) of the North-Western Argentinean Andes (26°S) T2 - Postprints der Universität Potsdam : Mathematisch Naturwissenschaftliche Reihe N2 - Uplift in the broken Andean foreland of the Argentine Santa Bárbara System (SBS) is associated with the contractional reactivation of basement anisotropies, similar to those reported from the thick-skinned Cretaceous-Eocene Laramide province of North America. Fault scarps, deformed Quaternary deposits and landforms, disrupted drainage patterns, and medium-sized earthquakes within the SBS suggest that movement along these structures may be a recurring phenomenon, with yet to be defined repeat intervals and rupture lengths. In contrast to the Subandes thrust belt farther north, where eastward-migrating deformation has generated a well-defined thrust front, the SBS records spatiotemporally disparate deformation along structures that are only known to the first order. We present herein the results of geomorphic desktop analyses, structural field observations, and 2D electrical resistivity tomography and seismic-refraction tomography surveys and an interpretation of seismic reflection profiles across suspected fault scarps in the sedimentary basins adjacent to the Candelaria Range (CR) basement uplift, in the south-central part of the SBS. Our analysis in the CR piedmont areas reveals consistency between the results of near-surface electrical resistivity and seismic-refraction tomography surveys, the locations of prominent fault scarps, and structural geometries at greater depth imaged by seismic reflection data. We suggest that this deformation is driven by deep-seated blind thrusting beneath the CR and associated regional warping, while shortening involving Mesozoic and Cenozoic sedimentary strata in the adjacent basins was accommodated by layer-parallel folding and flexural-slip faults that cut through Quaternary landforms and deposits at the surface. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1008 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-480183 SN - 1866-8372 IS - 1008 SP - 1 EP - 25 ER - TY - JOUR A1 - Arnous, Ahmad A1 - Zeckra, Martin A1 - Venerdini, Agostina A1 - Alvarado, Patricia A1 - Arrowsmith, Ramón A1 - Guillemoteau, Julien A1 - Landgraf, Angela A1 - Gutiérrez, Adolfo Antonio A1 - Strecker, Manfred T1 - Neotectonic Activity in the Low-Strain Broken Foreland (Santa Bárbara System) of the North-Western Argentinean Andes (26°S) JF - Lithosphere N2 - Uplift in the broken Andean foreland of the Argentine Santa Bárbara System (SBS) is associated with the contractional reactivation of basement anisotropies, similar to those reported from the thick-skinned Cretaceous-Eocene Laramide province of North America. Fault scarps, deformed Quaternary deposits and landforms, disrupted drainage patterns, and medium-sized earthquakes within the SBS suggest that movement along these structures may be a recurring phenomenon, with yet to be defined repeat intervals and rupture lengths. In contrast to the Subandes thrust belt farther north, where eastward-migrating deformation has generated a well-defined thrust front, the SBS records spatiotemporally disparate deformation along structures that are only known to the first order. We present herein the results of geomorphic desktop analyses, structural field observations, and 2D electrical resistivity tomography and seismic-refraction tomography surveys and an interpretation of seismic reflection profiles across suspected fault scarps in the sedimentary basins adjacent to the Candelaria Range (CR) basement uplift, in the south-central part of the SBS. Our analysis in the CR piedmont areas reveals consistency between the results of near-surface electrical resistivity and seismic-refraction tomography surveys, the locations of prominent fault scarps, and structural geometries at greater depth imaged by seismic reflection data. We suggest that this deformation is driven by deep-seated blind thrusting beneath the CR and associated regional warping, while shortening involving Mesozoic and Cenozoic sedimentary strata in the adjacent basins was accommodated by layer-parallel folding and flexural-slip faults that cut through Quaternary landforms and deposits at the surface. Y1 - 2019 U6 - https://doi.org/10.2113/2020/8888588 SN - 1947-4253 SN - 1941-8264 VL - 2020 IS - 1 SP - 1 EP - 25 PB - GSA CY - Boulder, Colo. ER - TY - JOUR A1 - Arrowsmith, J. Ramon A1 - Crosby, Christopher J. A1 - Korzhenkov, Andrey M. A1 - Mamyrov, Ernest A1 - Povolotskaya, Irina A1 - Guralnik, Benny A1 - Landgraf, Angela T1 - Surface rupture of the 1911 Kebin (Chon-Kemin) earthquake, Northern Tien Shan, Kyrgyzstan JF - Seismicity, fault rupture and earthquake hazards in slowly deforming regions N2 - The 1911 Chon-Kemin (Kebin) earthquake culminated c. 30 years of remarkable earthquakes in the northern Tien Shan (Kyrgyzstan and Kazakhstan). Building on prior mapping of the event, we traced its rupture in the field and measured more than 50 offset landforms. Cumulative fault rupture length is >155-195 km along 13 fault patches comprising six sections. The patches are separated by changes of dip magnitude or dip direction, or by 4-10 km-wide stepovers. One <40 km section overlaps and is parallel to the main north-dipping rupture but is 7 km north and dips opposite (south). Both ends of the rupture are along mountain front thrust faults demonstrating late Quaternary activity. We computed the moment from each fault patch using the surface fault traces, dip inferred from the traces, 20 km seismogenic thickness, rigidity of 3.3 x 10(10) N m(-2) and dip slip converted from our observations of the largely reverse sense of motion vertical offsets. The discontinuous patches with c. 3-4 m average slip and peak slip of <14 m yield a seismic moment of 4.6 x 10(20) Nm (M-w 7.78) to 7.4 x 10(20) Nm (M-w 7.91). The majority of moment was released along the inner eastern rupture segments. This geological moment is lower by a factor of 1.5 from that determined from teleseismic data. Y1 - 2016 SN - 978-1-86239-745-3 SN - 978-1-86239-964-8 U6 - https://doi.org/10.1144/SP432.10 SN - 0305-8719 VL - 432 SP - 233 EP - 253 PB - The Geological Society CY - London ER - TY - JOUR A1 - Ballato, Paolo A1 - Landgraf, Angela A1 - Schildgen, Taylor F. A1 - Stockli, Daniel F. A1 - Fox, Matthew A1 - Ghassemi, Mohammad R. A1 - Kirby, Eric A1 - Strecker, Manfred T1 - The growth of a mountain belt forced by base-level fall: Tectonics and surface processes during the evolution of the Alborz Mountains, N Iran JF - Earth & planetary science letters N2 - The idea that climatically modulated erosion may impact orogenic processes has challenged geoscientists for decades. Although modeling studies and physical calculations have provided a solid theoretical basis supporting this interaction, to date, field-based work has produced inconclusive results. The central-western Alborz Mountains in the northern sectors of the Arabia-Eurasia collision zone constitute a promising area to explore these potential feedbacks. This region is characterized by asymmetric precipitation superimposed on an orogen with a history of spatiotemporal changes in exhumation rates, deformation patterns, and prolonged, km-scale base-level changes. Our analysis suggests that despite the existence of a strong climatic gradient at least since 17.5 Ma, the early orogenic evolution (from similar to 36 to 9-6 Ma) was characterized by decoupled orographic precipitation and tectonics. In particular, faster exhumation and sedimentation along the more arid southern orogenic flank point to a north-directed accretionary flux and underthrusting of Central Iran. Conversely, from 6 to 3 Ma, erosion rates along the northern orogenic flank became higher than those in the south, where they dropped to minimum values. This change occurred during a similar to 3-Myr-long, km-scale base-level lowering event in the Caspian Sea. We speculate that mass redistribution processes along the northern flank of the Alborz and presumably across all mountain belts adjacent to the South Caspian Basin and more stable areas of the Eurasian plate increased the sediment load in the basin and ultimately led to the underthrusting of the Caspian Basin beneath the Alborz Mountains. This underthrusting in turn triggered a new phase of northward orogenic expansion, transformed the wetter northern flank into a new pro-wedge, and led to the establishment of apparent steady-state conditions along the northern orogenic flank (i.e., rock uplift equal to erosion rates). Conversely, the southern mountain front became the retro-wedge and experienced limited tectonic activity. These observations overall raise the possibility that mass-distribution processes during a pronounced erosion phase driven by base-level changes may have contributed to the inferred regional plate-tectonic reorganization of the northern Arabia-Eurasia collision during the last similar to 5 Ma. (C) 2015 Elsevier B.V. All rights reserved. KW - orogenic processes KW - surface processes KW - base-level fall KW - erosion KW - rock uplift KW - knickpoints Y1 - 2015 U6 - https://doi.org/10.1016/j.epsl.2015.05.051 SN - 0012-821X SN - 1385-013X VL - 425 SP - 204 EP - 218 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Ballato, Paolo A1 - Stockli, Daniel F. A1 - Ghassemi, Mohammad R. A1 - Landgraf, Angela A1 - Strecker, Manfred A1 - Hassanzadeh, Jamshid A1 - Friedrich, Anke M. A1 - Tabatabaei, Saeid H. T1 - Accommodation of transpressional strain in the Arabia-Eurasia collision zone new constraints from (U-Th)/He thermochronology in the Alborz mountains, north Iran JF - Tectonics N2 - The Alborz range of N Iran provides key information on the spatiotemporal evolution and characteristics of the Arabia-Eurasia continental collision zone. The southwestern Alborz range constitutes a transpressional duplex, which accommodates oblique shortening between Central Iran and the South Caspian Basin. The duplex comprises NW-striking frontal ramps that are kinematically linked to inherited E-W-striking, right-stepping lateral to obliquely oriented ramps. New zircon and apatite (U-Th)/He data provide a high-resolution framework to unravel the evolution of collisional tectonics in this region. Our data record two pulses of fast cooling associated with SW-directed thrusting across the frontal ramps at similar to 18-14 and 9.5-7.5 Ma, resulting in the tectonic repetition of a fossil zircon partial retention zone and a cooling pattern with a half U-shaped geometry. Uniform cooling ages of similar to 7-6 Ma along the southernmost E-W striking oblique ramp and across its associated NW-striking frontal ramps suggests that the ramp was reactivated as a master throughgoing, N-dipping thrust. We interpret this major change in fault kinematics and deformation style to be related to a change in the shortening direction from NE to N/NNE. The reduction in the obliquity of thrusting may indicate the termination of strike-slip faulting (and possibly thrusting) across the Iranian Plateau, which could have been triggered by an increase in elevation. Furthermore, we suggest that similar to 7-6-m.y.-old S-directed thrusting predated inception of the westward motion of the South Caspian Basin. Citation: Ballato, P., D. F. Stockli, M. R. Ghassemi, A. Landgraf, M. R. Strecker, J. Hassanzadeh, A. Friedrich, and S. H. Tabatabaei (2012), Accommodation of transpressional strain in the Arabia-Eurasia collision zone: new constraints from (U-Th)/He thermochronology in the Alborz mountains. Y1 - 2013 U6 - https://doi.org/10.1029/2012TC003159 SN - 0278-7407 VL - 32 IS - 1 SP - 1 EP - 18 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Ballato, Paolo A1 - Uba, Cornelius Eji A1 - Landgraf, Angela A1 - Strecker, Manfred A1 - Sudo, Masafumi A1 - Stockli, Daniel F. A1 - Friedrich, Anke M. A1 - Tabatabaei, Saeid H. T1 - Arabia-Eurasia continental collision insights from late Tertiary foreland-basin evolution in the Alborz Mountains, northern Iran JF - Geological Society of America bulletin N2 - A poorly understood lag time of 15-20 m.y. exists between the initial Arabia-Eurasia continental collision in late Eocene to early Oligocene time and the acceleration of tectonic and sedimentary processes across the collision zone in the early to late Miocene. The late Eocene to Miocene-Pliocene clastic and shallow-marine sedimentary rocks of the Kond, Eyvanekey, and Semnan Basins in the Alborz Mountains (northern Iran) offer the possibility to track the evolution of this orogen in the framework of collision processes. A transition from volcaniclastic submarine deposits to shallow-marine evaporites and terrestrial sediments occurred shortly after 36 Ma in association with reversals in sediment provenance, strata tilting, and erosional unroofing. These events followed the termination of subduction arc magmatism and marked a changeover from an extensional to a contractional regime in response to initiation of continental collision with the subduction of stretched Arabian lithosphere. This early stage of collision produced topographic relief associated with shallow foreland basins, suggesting that shortening and tectonic loading occurred at low rates. Starting from the early Miocene (17.5 Ma), flexural subsidence in response to foreland basin initiation occurred. Fast sediment accumulation rates and erosional unroofing trends point to acceleration of shortening by the early Miocene. We suggest that the lag time between the initiation of continental collision (36 Ma) and the acceleration of regional deformation (20-17.5 Ma) reflects a two-stage collision process, involving the "soft" collision of stretched lithosphere at first and "hard" collision following the arrival of unstretched Arabian continental litho sphere in the subduction zone. Y1 - 2011 U6 - https://doi.org/10.1130/B30091.1 SN - 0016-7606 VL - 123 IS - 1-2 SP - 106 EP - 131 PB - American Institute of Physics CY - Boulder ER - TY - JOUR A1 - Donner, Stefanie A1 - Ghods, Abdolreza A1 - Krüer, Frank A1 - Rößler, Dirk A1 - Landgraf, Angela A1 - Ballato, Paolo T1 - The Ahar-Varzeghan Earthquake Doublet (M-w 6.4 and 6.2) of 11 August 2012: Regional Seismic Moment Tensors JF - Bulletin of the Seismological Society of America N2 - On 11 August 2012 an earthquake doublet (M-w 6.4 and 6.2) occurred near the city of Ahar, northwest Iran. Both events were only 6 km and 11 minutes apart, producing a surface rupture of about 12 km in length. Historical and modern seismicity has so far been sparse in this area. Spatially, the region represents a transitional zone between different tectonic domains, including compression in Iran, westward extrusion of the Anatolian plate, and thrusting beneath the Caucasus. In this study, we inverted the surface waveforms of the two mainshocks and 11 aftershocks (M-w >= 4.3) to obtain regional seismic moment tensors. The earthquakes analyzed can be grouped into pure strike slip (including the first mainshock) and oblique reverse mechanisms (including the second mainshock). The sequence provides information about faulting mechanisms at the spatial scale of the entire rock volume affected by the earthquake doublet, including coinciding deformation on minor faults (sub) parallel to the main fault and Riedel shears. It occurred on a so far unknown fault structure, which we call the Ahar fault. Alongside the seismological data, we used geological maps, satellite images, and digital elevation data to analyze the geomorphology of the region. Our analysis suggests that the adjacent North Tabriz fault, which accomodates up to 7 mm/yr of right-lateral strike-slip faulting, does not compensate the entire lateral shear strain, and that part of it is compensated farther north. Combined, our results suggest a temporally and spatially complex style of deformation (reverse and strike slip) overprinting older reverse deformation. Y1 - 2015 U6 - https://doi.org/10.1785/0120140042 SN - 0037-1106 SN - 1943-3573 VL - 105 IS - 2A SP - 791 EP - 807 PB - Seismological Society of America CY - Albany ER - TY - GEN A1 - Donner, Stefanie A1 - Rößler, Dirk A1 - Strecker, Manfred A1 - Landgraf, Angela A1 - Ballato, Paolo T1 - Erweiterte Momententensorinversion und ihre seismotektonische Anwendung : Elbursgebirge, Nordiran T1 - Extended moment tensor inversion and its seismotectonic application : Alborz Mountains, Northern Iran N2 - Der Elburs im Norden Irans ist ein durch die Konvergenz der Arabischen und Eurasischen Platte verursachtes doppelt konvergentes Gebirge. Das komplexe System von Blattverschiebungen und Überschiebungen sowie die Aufnahme der Deformation im Elburs ist noch nicht sehr gut verstanden. Eine neu zu entwicklende Methode zur Inversion von seismischen Momententensoren, die unterschiedliche Beobachtungen verschiedener Stationstypen kombiniert invertiert, soll die bisher hauptsächlich strukturelle/geomorphologische Datengrundlage um Momententensoren auch kleinerer Magnituden (M < 4.5) erweitern. Dies ist die notwendige Grundlage für detaillierte seismotektonische Studien, die wiederum die Basis für seismische Gefährdungsanalysen bilden. KW - Momententensor KW - Iran KW - Seismotektonik KW - moment tensor KW - Iran KW - seismotectonics Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-29308 ER - TY - GEN A1 - Donner, Stefanie A1 - Strecker, Manfred A1 - Rößler, Dirk A1 - Ghods, Abdolreza A1 - Krüger, Frank A1 - Landgraf, Angela A1 - Ballato, Paolo T1 - Earthquake source models for earthquakes in Northern Iran N2 - The complex system of strike-slip and thrust faults in the Alborz Mountains, Northern Iran, are not well understood yet. Mainly structural and geomorphic data are available so far. As a more extensive base for seismotectonic studies and seismic hazard analysis we plan to do a comprehensive seismic moment tensor study also from smaller magnitudes (M < 4.5) by developing a new algorithm. Here, we present first preliminary results. KW - Elburs KW - Iran KW - Momententensor KW - Seismotektonik KW - Alborz KW - Iran KW - moment tensor KW - seismotectonics Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-32581 ER -