TY - JOUR A1 - Pieplow, Gregor A1 - Henkel, Carsten T1 - Cherenkov friction on a neutral particle moving parallel to a dielectric JF - Journal of physics : Condensed matter N2 - We describe a simple mechanism of quantum friction for a particle moving parallel to a dielectric, based on a fully relativistic framework and the assumption of local equilibrium. The Cherenkov effect explains how the bare ground state becomes globally unstable and how fluctuations of the electromagnetic field and the particle's dipole are converted into pairs of excitations. Modeling the particle as a silver nano-sphere, we investigate the spectrum of the force and its velocity dependence. We find that the damping of the plasmon resonance in the silver particle has a relatively strong impact near the Cherenkov threshold velocity. We also present an expansion of the friction force near the threshold velocity for both damped and undamped particles. KW - quantum friction KW - quantum electrodynamics KW - Cherenkov radiation KW - transition radiation KW - fluctuation forces Y1 - 2015 U6 - https://doi.org/10.1088/0953-8984/27/21/214001 SN - 0953-8984 SN - 1361-648X VL - 27 IS - 21 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Elsner, Robert A1 - Puhlmann, Dirk A1 - Pieplow, Gregor A1 - Heuer, Axel A1 - Menzel, Ralf T1 - Transverse distinguishability of entangled photons with arbitrarily shaped spatial near- and far-field distributions JF - Journal of the Optical Society of America : B, Optical physics N2 - Entangled photons generated by spontaneous parametric downconversion are ubiquitous in quantum optics. In general, they exhibit a complex spatial photon count distribution. This spatial structure is responsible for seemingly surprising results concerning, e.g., complementarity such as the apparent simultaneous observation of interference fringes V and which-way information D at a double slit, as recently reported by Menzel et al. [Proc. Natl. Acad. Sci. USA 109, 9314 (2012)]. We implement a complete quantitative model of the SPDC interaction that fully incorporates the effects of crystal anisotropies, phase matching, and the pump beam structure and allows for arbitrary manipulations of the SPDC light in the near and far fields. This enables us to establish an upper bound D-2 + V-2 <= 1.47 for the experimental parameters reported by Menzel et al. We report new experimental results that agree excellently with these theoretical predictions. The new model enables a detailed quantitative analysis of this surprising result and the fair sampling interpretation of biphotons passing a double slit. (C) 2015 Optical Society of America Y1 - 2015 U6 - https://doi.org/10.1364/JOSAB.32.001910 SN - 0740-3224 SN - 1520-8540 VL - 32 IS - 9 SP - 1910 EP - 1919 PB - Optical Society of America CY - Washington ER -