TY - GEN A1 - Horton, Benjamin P. A1 - Khan, Nicole S. A1 - Cahill, Niamh A1 - Lee, Janice S. H. A1 - Shaw, Timothy A. A1 - Garner, Andra J. A1 - Kemp, Andrew C. A1 - Engelhart, Simon E. A1 - Rahmstorf, Stefan T1 - Estimating global mean sea-level rise and its uncertainties by 2100 and 2300 from an expert survey T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Sea-level rise projections and knowledge of their uncertainties are vital to make informed mitigation and adaptation decisions. To elicit projections from members of the scientific community regarding future global mean sea-level (GMSL) rise, we repeated a survey originally conducted five years ago. Under Representative Concentration Pathway (RCP) 2.6, 106 experts projected a likely (central 66% probability) GMSL rise of 0.30-0.65 m by 2100, and 0.54-2.15 m by 2300, relative to 1986-2005. Under RCP 8.5, the same experts projected a likely GMSL rise of 0.63-1.32 m by 2100, and 1.67-5.61 m by 2300. Expert projections for 2100 are similar to those from the original survey, although the projection for 2300 has extended tails and is higher than the original survey. Experts give a likelihood of 42% (original survey) and 45% (current survey) that under the high-emissions scenario GMSL rise will exceed the upper bound (0.98 m) of the likely range estimated by the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, which is considered to have an exceedance likelihood of 17%. Responses to open-ended questions suggest that the increases in upper-end estimates and uncertainties arose from recent influential studies about the impact of marine ice cliff instability on the meltwater contribution to GMSL rise from the Antarctic Ice Sheet. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1437 KW - projections KW - Greenland KW - consequences KW - climate Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-516788 SN - 1866-8372 IS - 1 ER - TY - JOUR A1 - Horton, Benjamin P. A1 - Khan, Nicole S. A1 - Cahill, Niamh A1 - Lee, Janice S. H. A1 - Shaw, Timothy A. A1 - Garner, Andra J. A1 - Kemp, Andrew C. A1 - Engelhart, Simon E. A1 - Rahmstorf, Stefan T1 - Estimating global mean sea-level rise and its uncertainties by 2100 and 2300 from an expert survey JF - npj Climate and Atmospheric Science N2 - Sea-level rise projections and knowledge of their uncertainties are vital to make informed mitigation and adaptation decisions. To elicit projections from members of the scientific community regarding future global mean sea-level (GMSL) rise, we repeated a survey originally conducted five years ago. Under Representative Concentration Pathway (RCP) 2.6, 106 experts projected a likely (central 66% probability) GMSL rise of 0.30-0.65 m by 2100, and 0.54-2.15 m by 2300, relative to 1986-2005. Under RCP 8.5, the same experts projected a likely GMSL rise of 0.63-1.32 m by 2100, and 1.67-5.61 m by 2300. Expert projections for 2100 are similar to those from the original survey, although the projection for 2300 has extended tails and is higher than the original survey. Experts give a likelihood of 42% (original survey) and 45% (current survey) that under the high-emissions scenario GMSL rise will exceed the upper bound (0.98 m) of the likely range estimated by the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, which is considered to have an exceedance likelihood of 17%. Responses to open-ended questions suggest that the increases in upper-end estimates and uncertainties arose from recent influential studies about the impact of marine ice cliff instability on the meltwater contribution to GMSL rise from the Antarctic Ice Sheet. KW - projections KW - Greenland KW - consequences KW - climate Y1 - 2020 U6 - https://doi.org/10.1038/s41612-020-0121-5 SN - 2397-3722 VL - 3 IS - 1 SP - 1 EP - 8 PB - Springer Nature CY - London ER - TY - THES A1 - Dahlke, Sandro T1 - Rapid climate changes in the arctic region of Svalbard T1 - Aktuelle Klimaänderungen in der Svalbard-Region BT - processes, implications and representativeness for the broader Arctic BT - Prozesse, Auswirkungen und Repräsentativität für die Arktis N2 - Over the last decades, the Arctic regions of the earth have warmed at a rate 2–3 times faster than the global average– a phenomenon called Arctic Amplification. A complex, non-linear interplay of physical processes and unique pecularities in the Arctic climate system is responsible for this, but the relative role of individual processes remains to be debated. This thesis focuses on the climate change and related processes on Svalbard, an archipelago in the North Atlantic sector of the Arctic, which is shown to be a "hotspot" for the amplified recent warming during winter. In this highly dynamical region, both oceanic and atmospheric large-scale transports of heat and moisture interfere with spatially inhomogenous surface conditions, and the corresponding energy exchange strongly shapes the atmospheric boundary layer. In the first part, Pan-Svalbard gradients in the surface air temperature (SAT) and sea ice extent (SIE) in the fjords are quantified and characterized. This analysis is based on observational data from meteorological stations, operational sea ice charts, and hydrographic observations from the adjacent ocean, which cover the 1980–2016 period. It is revealed that typical estimates of SIE during late winter range from 40–50% (80–90%) in the western (eastern) parts of Svalbard. However, strong SAT warming during winter of the order of 2–3K per decade dictates excessive ice loss, leaving fjords in the western parts essentially ice-free in recent winters. It is further demostrated that warm water currents on the west coast of Svalbard, as well as meridional winds contribute to regional differences in the SIE evolution. In particular, the proximity to warm water masses of the West Spitsbergen Current can explain 20–37% of SIE variability in fjords on west Svalbard, while meridional winds and associated ice drift may regionally explain 20–50% of SIE variability in the north and northeast. Strong SAT warming has overruled these impacts in recent years, though. In the next part of the analysis, the contribution of large-scale atmospheric circulation changes to the Svalbard temperature development over the last 20 years is investigated. A study employing kinematic air-back trajectories for Ny-Ålesund reveals a shift in the source regions of lower-troposheric air over time for both the winter and the summer season. In winter, air in the recent decade is more often of lower-latitude Atlantic origin, and less frequent of Arctic origin. This affects heat- and moisture advection towards Svalbard, potentially manipulating clouds and longwave downward radiation in that region. A closer investigation indicates that this shift during winter is associated with a strengthened Ural blocking high and Icelandic low, and contributes about 25% to the observed winter warming on Svalbard over the last 20 years. Conversely, circulation changes during summer include a strengthened Greenland blocking high which leads to more frequent cold air advection from the central Arctic towards Svalbard, and less frequent air mass origins in the lower latitudes of the North Atlantic. Hence, circulation changes during winter are shown to have an amplifying effect on the recent warming on Svalbard, while summer circulation changes tend to mask warming. An observational case study using upper air soundings from the AWIPEV research station in Ny-Ålesund during May–June 2017 underlines that such circulation changes during summer are associated with tropospheric anomalies in temperature, humidity and boundary layer height. In the last part of the analysis, the regional representativeness of the above described changes around Svalbard for the broader Arctic is investigated. Therefore, the terms in the diagnostic temperature equation in the Arctic-wide lower troposphere are examined for the Era-Interim atmospheric reanalysis product. Significant positive trends in diabatic heating rates, consistent with latent heat transfer to the atmosphere over regions of increasing ice melt, are found for all seasons over the Barents/Kara Seas, and in individual months in the vicinity of Svalbard. The above introduced warm (cold) advection trends during winter (summer) on Svalbard are successfully reproduced. Regarding winter, they are regionally confined to the Barents Sea and Fram Strait, between 70°–80°N, resembling a unique feature in the whole Arctic. Summer cold advection trends are confined to the area between eastern Greenland and Franz Josef Land, enclosing Svalbard. N2 - Die Arktis hast sich über die letzten Jahrzehnte etwa 2–3 mal so schnell erwärmt wie die globale Mitteltemperatur der Erde, wofür der Begriff Arktische Verstärkung geprägt wurde. Eine komplexe Kaskade nichtlinear miteinander interagierender Prozesse und lokaler Bedingungen ist für das Auftreten dieses Phänomens verantwortlich, jedoch bleibt ein wissenschaftlicher Konsens zur Quantifizierung einzelner beteiligter Prozesse noch aus. Diese Arbeit befasst sich mit den Klimaänderungen und assoziierten Prozessen in der Svalbard-Region, einem arktischen Archipel im Nordatlantik. Svalbard kann als Brennpunkt der arktischen Veränderungen bezeichnet werden, vor allem während des Winters. In dieser ausgesprochen dynamischen Region interagieren die Energieflüsse durch großskalige atmosphärische und ozeanische Wärme- und Feuchtetransporte mit der heteorogenen Oberfläche, die sich aus Eis-, Wasser-, oder Landflächen zusammensetzt. Die daraus resultierenden horizontalen und vertikalen Energieflüsse stehen in engem Zusammenhang mit der Beschaffenheit der atmosphärischen Grenzschicht. Im ersten Teil dieser Arbeit werden laterale Unterschiede in der Oberflächentemperatur (SAT), sowie der Meereisbedeckung (SIE) in den Fjorden und Sunden des Archipels quantifiziert und klassifiziert. Dies geschieht auf der Grundlage von meteorologischen Stationsmessdaten und operationellen Eisbedeckungskarten der Jahe 1980–2016. Es zeigt sich, dass prozentuale Eisbedeckungen im Osten des Studiengebietes typischerweise 80–90% im Winter erreichen, während diese Werte in Fjorden der Westküste mit 40–50% deutlich niedriger liegen. Allerdings bedingt eine starke, winterliche SAT Erwärmung von 2–3K pro Jahrzehnt signifikante SIE Abwärtstrends, sodass die Fjorde im Westen von Svalbard in den jüngeren Wintern üblicherweise eisfrei waren. Im Weiteren wird gezeigt dass die warmen Ozeanströmungen nahe der Westküste, sowie spezielle Windkonstellationen, einen signifikanten regionalen Einfluss auf die langzeitliche Entwicklung der Meereisbedeckung ausüben. So kann Variabilität in der Temperatur des Westspitzbergenstroms etwa 20–37% der zwischenjährlichen SIE Variabilität in den Fjorden der Westküste erklären. Die meridionale Atmosphärenströmung nordwestlich von Spitzbergen, die hochkorelliert mit Eisdrift ist, kann andererseits –regional abhängig– etwa 20–50% der SIE-Variablität in den nördlichen und nordöstlichen Fjorden erklären. Durch den starken temperaturbedingten Eisrückgang in der gesamten Region sind diese Einflüsse zuletzt jedoch stark abgeschwächt. Im Folgenden wird der Beitrag von Zirkulationsänderungen zur Temperaturentwicklung Svalbards während der letzten 20 Jahre untersucht. Die Analyse basiert auf den Quellregionen troposphärischer Luftmassen, die sich aus kinematischen FLEXTRA-Rückwärtstrajektorien ergeben. Für den Winter zeigt sich, dass sich diese zuletzt immer häufiger in sub-arktische Gebiete über dem Nordatlantik verlagert hatten, und seltener in der hohen Arktis lagen. Dies moduliert Warmluft-, und Feuchtetransporte in Richtung Spitzbergen, und beeinflusst potentiell Wolkencharakteristiken und assoziierte Strahlungsprozesse. Nähere Untersuchen zeigen dass ein zuletzt stärker ausgeprägtes Uralhoch und Islandtief dafür verantwortlich sind, und dass dies einen Beitrag von etwa 25% zur jüngsten Wintererwärmung auf Spitzbergen hat. Sommertrajektorien offenbaren eine gegensätzliche Entwicklung, mit häufigerer Anströmung aus der Zentralarktis, welche mit Kaltluftadvektion einhergeht, auf Kosten von seltenerer Anströmung aus dem Süden. Dies liegt in einem während der letzten 10 Jahre stark ausgeprägten Grönlandhoch begründet. Eine Fallstudie anhand von Radiosondendaten vom Frühsommer 2017 untermauert die Ergebnisse und zeigt darüber hinaus, dass derartige Zirkulationsänderungen mit ausgeprägten Anomalien von troposphärischen Temperaturen,Feuchtigkeit, und der Grenzschichthöhe in Ny-Ålesund einher geht. Interessanterweise tragen Zirkulationsänderungen im Winter also verstärkend zur Erwärmung auf Svalbard bei, während jene im Sommer einer stärkeren Erwärmung entgegenwirken. In einem letzten Analyseschritt wird die regionale Repräsentativität der Region für die weitere Arktis erörtert. Die Analyse von Era-Interim Reanalysedaten untermauert hierbei zunächst die advektiven Temperaturänderungen in Sommer und Winter in der Region um Svalbard. Der Trend zu verstärkt positiver winterlicher Temperaturadvektion ist einzigartig in der Arktis und beschränkt sich auf die Regionen zwischen Barentssee, Spitzbergen und der nördlichen Framstraße. Die sommerliche erhöhte Kaltluftadvektion findet sich in einem weiten Gebiet zwischen der Ostküste Grönlands und Franz-Josef-Land, welches Svalbard einschließt. Ein diabatischer Erwärmungstrend, der mit aufwärts gerichteten latenten Energieflüssen und Eisrückgang konsistent ist, findet sich in allen Jahreszeiten über der Barents/Karasee wieder, und erstreckt sich in einzelnen Monaten bis nach Svalbard. KW - arctic KW - climate KW - Svalbard KW - meteorology KW - climatology KW - atmosphere KW - Arktis KW - Klima KW - Svalbard KW - Meteorologie KW - Klimatologie KW - Atmosphäre Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-445542 ER - TY - THES A1 - Totz, Sonja Juliana T1 - Modeling and data analysis of large-scale atmosphere dynamics associated with extreme weather N2 - In the last decades the frequency and intensity of extreme weather events like heat waves and heavy rainfall have increased and are at least partly linked to global warming. These events can have a strong impact on agricultural and economic production and, thereby, on society. Thus, it is important to improve our understanding of the physical processes leading to those extreme events in order to provide accurate near-term and long-term forecasts. Thermodynamic drivers associated with global warming are well understood, but dynamical aspects of the atmosphere much less so. The dynamical aspects, while less important than the thermodynamic drivers in regards to large-scale and long-time averaged effects, play a critical role in the formation of extremes. The overall aim of this thesis is to improve our understanding of patterns, variability and trends in the global atmospheric circulation under a changing climate. In particular, in this dissertation I developed two new data-driven methods to quantitatively describe the dynamics of jet streams, Hadley cells and storm tracks. In addition, I introduce and validate a new statistical-dynamical atmosphere model that can be used to efficiently model the large-scale circulation. First, I developed a scheme based on the Dijkstra ‘shortest-path’ algorithm to identify jet stream cores. Using reanalysis data, I found a significant change in jet stream strength and position over the last decades: Specifically, a decrease in wind speeds and a spatial shift toward the poles. This work also shows that the splitting or merging of the polar front jet stream and the subtropical jet stream depends on the season and longitudinal position. In a follow-up study, I analyzed trends in the latitudinal position of the poleward edge of the Hadley cell and subtropical jet stream core for all longitudes. These trends depend strongly on longitude and thus the impacts of tropical expansion might be pronounced in some regions and absent in others. The second approach was to develop an empirical forecast method for European and Mediterranean winter precipitation. This prediction algorithm innovatively incorporates the spatial patterns of predictors in autumn using clustering analyses. I identified the most important precursors (snow cover in Eurasia, Barents and Kara sea ice concentrations as well as sea surface temperature in the Atlantic and Mediterranean region) for the precipitation prediction. This forecast algorithm had higher forecast skills than conventionally employed methods such as Canonical Correlation Analysis or operational systems using climate models. The last approach was to examine the atmospheric circulation using the novel statisticaldynamical atmosphere model Aeolus. First, I validated the model’s depiction of the largescale circulation in terms of Hadley circulation, jet streams, storm tracks and planetary waves. To do so, I performed a parameter optimization using simulated annealing. Next, I investigated the sensitivity of the large-scale circulation to three different temperature components: global mean temperature, meridional temperature gradient and zonal temperature gradient. The model experiment showed that the strength of the Hadley cell, storm tracks and jet streams depend almost linearly on both the global mean temperature and the meridional temperature gradient, whereas the zonal temperature gradient is shown to have little or no influence. The magnitude of planetary waves is clearly affected by all three temperature components. Finally, the width of the Hadley cell behaves nonlinearly with respect to all three temperature components. These findings might have profound consequences for climate modeling of the Mediterranean region. The latitudinal poleward trend of the Hadley cell edge position might become stronger under climate change according to the results with Aeolus. These changes would lead to a substantial reduction of the winter precipitation in the Mediterranean region. In this case seasonal empirical forecast methods, like the clustering-based prediction scheme, will play an important role for forecasting seasonal droughts in advance such that water managers and politicians can mitigate impacts. N2 - In den letzten Jahren konnte ein Anstieg bei der Frequenz und Häufigkeit von Extremwetterereignissen wie Hitze- und Niederschlagsextreme beobachtet werden. Diese Ereignisse können einen massiven Einfluss auf die Landwirtschaft und ökonomische Produktion, und somit auf die gesamte Gesellschaft haben. Daher ist es wichtig, die zugrundeliegenden physikalischen Prozesse, die zu diesen Extremwetterereignissen führen, besser zu verstehen, um exakte Vorhersagen in naher und ferner Zukunft zu erstellen. Der Einfluss der thermodynamischen Kräfte auf den Klimawandel sind weitgehend bekannt, aber atmosphärischdynamische Aspekte weniger. Dynamische Aspekte, obwohl weniger wichtig bei großräumigen und langzeitgemittelten Effekten, spielen eine entscheidende Rolle zur Entstehung von Extremwetterereignissen. Das übergeordnete Ziel dieser Dissertation ist es das Verständnis der Muster, Variabilität und Entwicklungen der globalen Atmosphärenzirkulation unter dem Klimawandel zu verbessern. Im Einzelnen entwickle ich in dieser Dissertation zwei neue datengetriebene Methoden, um quantitativ die Dynamik der Jetstreams, Hadley-Zellen und Sturmbahnen zu untersuchen. Außerdem wird ein neues statistisch-dynamisches Atmosphärenmodell vorgestellt und verifiziert, um effizient großräumige Zirkulationen zu simulieren. Zunächst habe ich ein Programm basierend auf dem „kürzester Pfad“- Algorithmus von Dijkstra zur Detektion von Jetstreampfaden entwickelt. Unter Verwendung von Reanalysedaten lässt sich eine signifikante Änderung in der Stärke und dem Ort des Jetstreams über die letzten Jahrzehnte feststellen: Eine Abnahme der Windgeschwindigkeiten und eine räumliche Verschiebung in Richtung der Pole. Außerdem habe ich gezeigt, dass sich der polare und subtropische Jetstream je nach Jahreszeit und Längengrad vereinigen oder in zwei Jetstreams aufteilen. Weiterhin habe ich die Entwicklung der breitengradabhängigen Lage von Hadley-Zellen und der subtropischen Jetstreampfade analysiert. Die Trends hängen sehr stark vom Längengrad ab und daher sind die Auswirkungen der tropischen Ausdehnung in einigen Regionen sehr ausgeprägt und in anderen bleiben sie aus. Ein zweiter Zugang umfasst die Entwicklung einer empirischen Vorhersagemethode für den winterlichen Niederschlag im Mittelmeer- und im europäischen Gebiet. Dieses Vorhersageprogramm bezieht innovativ die räumliche Verteilung von Prädiktoren im Herbst unter Verwendung der Clusteranalyse ein. Die wichtigsten Faktoren zur Niederschlagsvorhersage sind Schnee in Eurasien, Barents und Kara Eiskonzentrationen sowie Oberflächentemperatur des Meeres im Atlantik und im Mittelmeerraum. Dieses Vorhersageprogramm hat eine höhere Vorhersagegenauigkeit als herkömmliche Methoden wie beispielsweise Canonical Correlation Analysis oder operative Systeme unter Verwendung von Klimamodellen. Der dritte Ansatz ist eine Untersuchung der Atmosphärenzirkulation mit dem statistischdynamischen Atmosphärenmodell Aeolus. Zunächst habe ich die Modelldarstellung der großräumigen Zirkulation in Bezug auf die Hadley Zirkulation, Jetstreams, Sturmbahnen und planetare Wellen validiert. Dafür führte ich eine Parameteroptimierung unter Verwendung von „Simulated Annealing“ durch. Im nächsten Schritt untersuchte ich die Sensitivität der großräumigen Zirkulation in Bezug auf drei verschiedene Temperaturkomponenten: globale mittlere Temperatur, meridionaler und zonaler Temperaturgradient. Das Modell zeigte, dass die Intensität der Hadley-Zelle, der Sturmaktivität, und der Jetstreams fast ausschließlich von der globalen Temperatur und dem meridionalen Temperaturgradienten abhängt, während der zonale Temperaturgradient kaum Einfluss hat. Die Stärke der planetaren Wellen wird von allen drei Komponenten beeinflusst. Auch die Breite der Hadley-Zelle verhält sich nichtlinear in Abhängigkeit der drei Temperaturkomponenten. Diese Ergebnisse könnten weitreichende Konsequenzen für die Klimamodellierung des Mittelmeerraums haben. Der breitengradabhängige Trend der Hadley-Zellenflanke könnte unter dem Klimawandel steigen, gemäß den Ergebnissen von Aeolus. Diese Änderungen können zu einer deutlichen Reduktion des winterlichen Niederschlages im Mittelmeerraum führen. In diesem Fall werden saisonale empirische Vorhersagemodelle wie das Clusterbasierte Vorhersageprogramm eine große Rolle spielen, um saisonale Dürren frühzeitig vorhersagen zu können, damit Manager und Politiker frühzeitig Maßnahmen ergreifen können. KW - climate Y1 - 2018 ER -