TY - JOUR A1 - Vilk, Ohad A1 - Aghion, Erez A1 - Avgar, Tal A1 - Beta, Carsten A1 - Nagel, Oliver A1 - Sabri, Adal A1 - Sarfati, Raphael A1 - Schwartz, Daniel K. A1 - Weiß, Matthias A1 - Krapf, Diego A1 - Nathan, Ran A1 - Metzler, Ralf A1 - Assaf, Michael T1 - Unravelling the origins of anomalous diffusion BT - from molecules to migrating storks JF - Physical Review Research N2 - Anomalous diffusion or, more generally, anomalous transport, with nonlinear dependence of the mean-squared displacement on the measurement time, is ubiquitous in nature. It has been observed in processes ranging from microscopic movement of molecules to macroscopic, large-scale paths of migrating birds. Using data from multiple empirical systems, spanning 12 orders of magnitude in length and 8 orders of magnitude in time, we employ a method to detect the individual underlying origins of anomalous diffusion and transport in the data. This method decomposes anomalous transport into three primary effects: long-range correlations (“Joseph effect”), fat-tailed probability density of increments (“Noah effect”), and nonstationarity (“Moses effect”). We show that such a decomposition of real-life data allows us to infer nontrivial behavioral predictions and to resolve open questions in the fields of single-particle tracking in living cells and movement ecology. Y1 - 2022 U6 - https://doi.org/10.1103/PhysRevResearch.4.033055 SN - 2643-1564 VL - 4 IS - 3 SP - 033055-1 EP - 033055-16 PB - American Physical Society CY - College Park, MD ER - TY - GEN A1 - Vilk, Ohad A1 - Aghion, Erez A1 - Avgar, Tal A1 - Beta, Carsten A1 - Nagel, Oliver A1 - Sabri, Adal A1 - Sarfati, Raphael A1 - Schwartz, Daniel K. A1 - Weiß, Matthias A1 - Krapf, Diego A1 - Nathan, Ran A1 - Metzler, Ralf A1 - Assaf, Michael T1 - Unravelling the origins of anomalous diffusion BT - from molecules to migrating storks T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Anomalous diffusion or, more generally, anomalous transport, with nonlinear dependence of the mean-squared displacement on the measurement time, is ubiquitous in nature. It has been observed in processes ranging from microscopic movement of molecules to macroscopic, large-scale paths of migrating birds. Using data from multiple empirical systems, spanning 12 orders of magnitude in length and 8 orders of magnitude in time, we employ a method to detect the individual underlying origins of anomalous diffusion and transport in the data. This method decomposes anomalous transport into three primary effects: long-range correlations (“Joseph effect”), fat-tailed probability density of increments (“Noah effect”), and nonstationarity (“Moses effect”). We show that such a decomposition of real-life data allows us to infer nontrivial behavioral predictions and to resolve open questions in the fields of single-particle tracking in living cells and movement ecology. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1303 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-577643 SN - 1866-8372 IS - 1303 ER - TY - JOUR A1 - Nagel, Oliver A1 - Frey, Manuel A1 - Gerhardt, Matthias A1 - Beta, Carsten T1 - Harnessing Motile Amoeboid Cells as Trucks for Microtransport and -Assembly JF - Advanced science N2 - Cell-driven microtransport is one of the most prominent applications in the emerging field of biohybrid systems. While bacterial cells have been successfully employed to drive the swimming motion of micrometer-sized cargo particles, the transport capacities of motile adherent cells remain largely unexplored. Here, it is demonstrated that motile amoeboid cells can act as efficient and versatile trucks to transport microcargo. When incubated together with microparticles, cells of the social amoeba Dictyostelium discoideum readily pick up and move the cargo particles. Relying on the unspecific adhesive properties of the amoeba, a wide range of different cargo materials can be used. The cell-driven transport can be directionally guided based on the chemotactic responses of amoeba to chemoattractant gradients. On the one hand, the cargo can be assembled into clusters in a self-organized fashion, relying on the developmentally induced chemotactic aggregation of cells. On the other hand, chemoattractant gradients can be externally imposed to guide the cellular microtrucks to a desired location. Finally, larger cargo particles of different shapes that exceed the size of a single cell by more than an order of magnitude, can also be transported by the collective effort of large numbers of motile cells. KW - biohybrid microsystems KW - chemotaxis KW - Dictyostelium discoideum KW - microtransport and -assembly Y1 - 2018 U6 - https://doi.org/10.1002/advs.201801242 SN - 2198-3844 VL - 6 IS - 3 PB - Wiley CY - Hoboken ER - TY - GEN A1 - Lepro, Valentino A1 - Nagel, Oliver A1 - Klumpp, Stefan A1 - Lipowsky, Reinhard A1 - Beta, Carsten T1 - Cooperative Transport by Amoeboid Cells BT - a Cellular Tug-of-War T2 - Biophysical journal Y1 - 2019 U6 - https://doi.org/10.1016/j.bpj.2018.11.682 SN - 0006-3495 SN - 1542-0086 VL - 116 IS - 3 SP - 122A EP - 122A PB - Cell Press CY - Cambridge ER - TY - THES A1 - Nagel, Oliver T1 - Amoeboid cells as a transport system for micro-objects T1 - Amöboide Zellen als Transportsystem für Mikroobjekte N2 - Due to advances in science and technology towards smaller and more powerful processing units, the fabrication of micrometer sized machines for different tasks becomes more and more possible. Such micro-robots could revolutionize medical treatment of diseases and shall support to work on other small machines. Nevertheless, scaling down robots and other devices is a challenging task and will probably remain limited in near future. Over the past decade the concept of bio-hybrid systems has proved to be a promising approach in order to advance the further development of micro-robots. Bio-hybrid systems combine biological cells with artificial components, thereby benefiting from the functionality of living biological cells. Cell-driven micro-transport is one of the most prominent applications in the emerging field of these systems. So far, micrometer sized cargo has been successfully transported by means of swimming bacterial cells. The potential of motile adherent cells as transport systems has largely remained unexplored. This thesis concentrates on the social amoeba Dictyostelium discoideum as a potential candidate for an amoeboid bio-hybrid transport system. The use of this model organism comes with several advantages. Due to the unspecific properties of Dictyostelium adhesion, a wide range of different cargo materials can be used for transport. As amoeboid cells exceed bacterial cells in size by one order of magnitude, also the size of an object carried by a single cell can also be much larger for an amoeba. Finally it is possible to guide the cell-driven transport based on the chemotactic behavior of the amoeba. Since cells undergo a developmentally induced chemotactic aggregation, cargo could be assembled in a self-organized manner into a cluster. It is also possible to impose an external chemical gradient to guide the amoeboid transport system to a desired location. To establish Dictyostelium discoideum as a possible candidate for bio-hybrid transport systems, this thesis will first investigate the movement of single cells. Secondly, the interaction of cargo and cells will be studied. Eventually, a conceptional proof will be conducted, that the cheomtactic behavior can be exploited either to transport a cargo self-organized or through an external chemical source. N2 - Durch die Fortschritte in Wissenschaft und Technik hin zu kleineren und leistungsfähigeren Prozessoren wird die Herstellung von Maschinen mit einer Größe von wenigen Mikrometern immer wahrscheinlicher. Solche Mikro-Roboter könnten sowohl die medizinische Behandlung von Krankheiten revolutionieren als auch dabei helfen andere kleine Maschinen zu bauen. Nichts desto trotz ist es eine komplizierte Aufgabe Roboter sowie andere Maschinen zu verkleinern und wird in naher Zukunft wohl nur begrenzt möglich sein. Im Verlauf des letzten Jahrzehnts hat sich das Konzept der Bio-Hybridsysteme als ein vielversprechender Ansatz entwickelt, um Mikro-Roboter weiter zu entwickeln. Bio-Hybridsysteme kombinieren biologische Zellen mit künstlichen Komponenten, um so einen Vorteil aus der Funktionalität lebender biologischer Zellen zu ziehen. Der zellgetriebene Mikro-Transport ist eine der bekanntesten Anwendungen in dem wachsenden Feld dieser Systeme. Bisher wurde mikrometergroße Fracht erfolgreich mit Hilfe von schwimmenden Bakterien transportiert. Das Potential beweglicher, adhärenter Zellen als Transportsystem blieb bisher weitgehend unerforscht. Diese Arbeit beschäftigt sich mit der sozialen Amöbe Dictyostelium discoideum als einen potentiellen Kandidaten für ein auf Amöben basiertes Bio-Hybridtransportsystem. Die Nutzung dieses Modellorganismus bringt einige Vorteile mit sich. Auf Grund der unspezifischen Adhäsion von Dictyostelium ist es möglich eine Vielzahl von verschiedenen Frachtmaterialien für den Transport zu nutzen. Da Amöben um eine Größenordnung größer sind als Bakterien, können auch die Objekte, die eine einzelne Amöbe transportieren kann um einiges größer sein, als bei einer einzelnen Bakterie. Desweiteren ist noch möglich den zellgetrieben Transport durch das chemotaktische Verhalten der Amöben zu steuern. Da die Zellen im Verlauf ihres Lebenszyklus’ eine entwicklungsinduzierte chemotaktische Aggregation durchlaufen, ist es möglich, die Fracht in einer selbstorganisierten Art und Weise in Aggregate zusammen zu führen. Es ist auch möglich einen externen chemotaktischen Stimulus zu generieren, um das auf Amöben basierende Transportsystem zu einer gewünschten Position zu lenken. Um Dictyostelium discoideum als denkbaren Kandidaten für ein Bio-Hybridtransportsystem zu etablieren, wird in dieser Arbeit zuerst die Bewegung einzelner Zellen untersucht. Als zweites wird die Interaktion von Zellen und Fracht studiert. Zum Schluss wird ein konzeptioneller Beweis geführt, dass das chemotaktische Verhalten der Zellen genutzt werden kann, um eine Fracht entweder selbstorganisiert oder mit Hilfe eines externen Stimulus zu transportieren. KW - bio-hybrid KW - dicytostelium KW - chemotaxsis KW - Bio-Hybrid KW - Dicytostelium KW - Chemotaxsis Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-442192 ER - TY - JOUR A1 - Nagel, Oliver A1 - Guven, Can A1 - Theves, Matthias A1 - Driscoll, Meghan A1 - Losert, Wolfgang A1 - Beta, Carsten T1 - Geometry-driven polarity in motile amoeboid cells JF - PLoS one N2 - Motile eukaryotic cells, such as leukocytes, cancer cells, and amoeba, typically move inside the narrow interstitial spacings of tissue or soil. While most of our knowledge of actin-driven eukaryotic motility was obtained from cells that move on planar open surfaces, recent work has demonstrated that confinement can lead to strongly altered motile behavior. Here, we report experimental evidence that motile amoeboid cells undergo a spontaneous symmetry breaking in confined interstitial spaces. Inside narrow channels, the cells switch to a highly persistent, unidirectional mode of motion, moving at a constant speed along the channel. They remain in contact with the two opposing channel side walls and alternate protrusions of their leading edge near each wall. Their actin cytoskeleton exhibits a characteristic arrangement that is dominated by dense, stationary actin foci at the side walls, in conjunction with less dense dynamic regions at the leading edge. Our experimental findings can be explained based on an excitable network model that accounts for the confinement-induced symmetry breaking and correctly recovers the spatio-temporal pattern of protrusions at the leading edge. Since motile cells typically live in the narrow interstitial spacings of tissue or soil, we expect that the geometry-driven polarity we report here plays an important role for movement of cells in their natural environment. Y1 - 2014 U6 - https://doi.org/10.1371/journal.pone.0113382 SN - 1932-6203 VL - 9 IS - 12 PB - PLoS CY - San Fransisco ER -