TY - JOUR A1 - Leto, Paolo A1 - Trigilio, C. A1 - Oskinova, Lida A1 - Ignace, R. A1 - Buemi, C. S. A1 - Umana, G. A1 - Ingallinera, A. A1 - Leone, Francesco A1 - Phillips, N. M. A1 - Agliozzo, Claudia A1 - Todt, Helge Tobias A1 - Cerrigone, L. T1 - A combined multiwavelength VLA/ALMA/Chandra study unveils the complex magnetosphere of the B-type star HR5907 JF - Monthly notices of the Royal Astronomical Society N2 - We present new radio/millimeter measurements of the hot magnetic star HR5907 obtained with the VLA and ALMA interferometers. We find that HR5907 is the most radio luminous early type star in the cm-mm band among those presently known. Its multi-wavelength radio light curves are strongly variable with an amplitude that increases with radio frequency. The radio emission can be explained by the populations of the non-thermal electrons accelerated in the current sheets on the outer border of the magnetosphere of this fast-rotating magnetic star. We classify HR5907 as another member of the growing class of strongly magnetic fast-rotating hot stars where the gyro-synchrotron emission mechanism efficiently operates in their magnetospheres. The new radio observations of HR5907 are combined with archival X-ray data to study the physical condition of its magnetosphere. The X-ray spectra of HR5907 show tentative evidence for the presence of non-thermal spectral component. We suggest that non-thermal X-rays originate a stellar X-ray aurora due to streams of non-thermal electrons impacting on the stellar surface. Taking advantage of the relation between the spectral indices of the X-ray power-law spectrum and the non-thermal electron energy distributions, we perform 3-D modelling of the radio emission for HR5907. The wavelength-dependent radio light curves probe magnetospheric layers at different heights above the stellar surface. A detailed comparison between simulated and observed radio light curves leads us to conclude that the stellar magnetic field of HR 5907 is likely non-dipolar, providing further indirect evidence of the complex magnetic field topology of HR5907. KW - stars: chemically peculiar KW - stars: early-type KW - stars: individual: HR 5907 KW - stars: magnetic field KW - radio continuum: stars KW - X-rays: stars Y1 - 2018 U6 - https://doi.org/10.1093/mnras/sty244 SN - 0035-8711 SN - 1365-2966 VL - 476 IS - 1 SP - 562 EP - 579 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Leto, Paolo A1 - Trigilio, C. A1 - Oskinova, Lida A1 - Ignace, R. A1 - Buemi, C. S. A1 - Umana, G. A1 - Cavallaro, Francesco A1 - Ingallinera, A. A1 - Bufano, F. A1 - Phillips, N. M. A1 - Agliozzo, Claudia A1 - Cerrigone, L. A1 - Todt, Helge Tobias A1 - Riggi, S. A1 - Leone, Francesco T1 - The polarization mode of the auroral radio emission from the early-type star HD 142301 JF - Monthly notices of the Royal Astronomical Society N2 - We report the detection of the auroral radio emission from the early-type magnetic star HD142301. New VLA observations of HD142301 detected highly polarized amplified emission occurring at fixed stellar orientations. The coherent emission mechanism responsible for the stellar auroral radio emission amplifies the radiation within a narrow beam, making the star where this phenomenon occurs similar to a radio lighthouse. The elementary emission process responsible for the auroral radiation mainly amplifies one of the two magneto-ionic modes of the electromagnetic wave. This explains why the auroral pulses are highly circularly polarized. The auroral radio emission of HD142301 is characterized by a reversal of the sense of polarization as the star rotates. The effective magnetic field curve of HD142301 is also available making it possible to correlate the transition from the left to the right-hand circular polarization sense ( and vice versa) of the auroral pulses with the known orientation of the stellar magnetic field. The results presented in this letter have implications for the estimation of the dominant magneto-ionic mode amplified within the HD142301 magnetosphere. KW - masers KW - polarization KW - stars: early-type KW - stars: individual: HD142301 KW - stars: magnetic field KW - radio continuum: stars Y1 - 2018 U6 - https://doi.org/10.1093/mnrasl/sly179 SN - 0035-8711 SN - 1365-2966 VL - 482 IS - 1 SP - L4 EP - L8 PB - Oxford Univ. Press CY - Oxford ER -