TY - JOUR A1 - Schibalski, Anett A1 - Körner, Katrin A1 - Maier, Martin A1 - Jeltsch, Florian A1 - Schröder, Boris T1 - Novel model coupling approach for resilience analysis of coastal plant communities JF - Ecological applications : a publication of the Ecological Society of America N2 - Resilience is a major research focus covering a wide range of topics from biodiversity conservation to ecosystem (service) management. Model simulations can assess the resilience of, for example, plant species, measured as the return time to conditions prior to a disturbance. This requires process-based models (PBM) that implement relevant processes such as regeneration and reproduction and thus successfully reproduce transient dynamics after disturbances. Such models are often complex and thus limited to either short-term or small-scale applications, whereas many research questions require species predictions across larger spatial and temporal scales. We suggest a framework to couple a PBM and a statistical species distribution model (SDM), which transfers the results of a resilience analysis by the PBM to SDM predictions. The resulting hybrid model combines the advantages of both approaches: the convenient applicability of SDMs and the relevant process detail of PBMs in abrupt environmental change situations. First, we simulate dynamic responses of species communities to a disturbance event with a PBM. We aggregate the response behavior in two resilience metrics: return time and amplitude of the response peak. These metrics are then used to complement long-term SDM projections with dynamic short-term responses to disturbance. To illustrate our framework, we investigate the effect of abrupt short-term groundwater level and salinity changes on coastal vegetation at the German Baltic Sea. We found two example species to be largely resilient, and, consequently, modifications of SDM predictions consisted mostly of smoothing out peaks in the occurrence probability that were not confirmed by the PBM. Discrepancies between SDM- and PBM-predicted species responses were caused by community dynamics simulated in the PBM and absent from the SDM. Although demonstrated with boosted regression trees (SDM) and an existing individual-based model, IBC-grass (PBM), our flexible framework can easily be applied to other PBM and SDM types, as well as other definitions of short-term disturbances or long-term trends of environmental change. Thus, our framework allows accounting for biological feedbacks in the response to short- and long-term environmental changes as a major advancement in predictive vegetation modeling. KW - Baltic Sea KW - hybrid model KW - Lolium perenne KW - model coupling KW - Scirpus maritimus KW - transient dynamics Y1 - 2018 U6 - https://doi.org/10.1002/eap.1758 SN - 1051-0761 SN - 1939-5582 VL - 28 IS - 6 SP - 1640 EP - 1654 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Lozada Gobilard, Sissi Donna A1 - Stang, Susanne A1 - Pirhofer-Walzl, Karin A1 - Kalettka, Thomas A1 - Heinken, Thilo A1 - Schröder, Boris A1 - Eccard, Jana A1 - Joshi, Jasmin Radha T1 - Environmental filtering predicts plant-community trait distribution and diversity BT - Kettle holes as models of meta-community systems JF - Ecology and evolution N2 - Meta-communities of habitat islands may be essential to maintain biodiversity in anthropogenic landscapes allowing rescue effects in local habitat patches. To understand the species-assembly mechanisms and dynamics of such ecosystems, it is important to test how local plant-community diversity and composition is affected by spatial isolation and hence by dispersal limitation and local environmental conditions acting as filters for local species sorting.We used a system of 46 small wetlands (kettle holes)natural small-scale freshwater habitats rarely considered in nature conservation policiesembedded in an intensively managed agricultural matrix in northern Germany. We compared two types of kettle holes with distinct topographies (flat-sloped, ephemeral, frequently plowed kettle holes vs. steep-sloped, more permanent ones) and determined 254 vascular plant species within these ecosystems, as well as plant functional traits and nearest neighbor distances to other kettle holes.Differences in alpha and beta diversity between steep permanent compared with ephemeral flat kettle holes were mainly explained by species sorting and niche processes and mass effect processes in ephemeral flat kettle holes. The plant-community composition as well as the community trait distribution in terms of life span, breeding system, dispersal ability, and longevity of seed banks significantly differed between the two habitat types. Flat ephemeral kettle holes held a higher percentage of non-perennial plants with a more persistent seed bank, less obligate outbreeders and more species with seed dispersal abilities via animal vectors compared with steep-sloped, more permanent kettle holes that had a higher percentage of wind-dispersed species. In the flat kettle holes, plant-species richness was negatively correlated with the degree of isolation, whereas no such pattern was found for the permanent kettle holes.Synthesis: Environment acts as filter shaping plant diversity (alpha and beta) and plant-community trait distribution between steep permanent compared with ephemeral flat kettle holes supporting species sorting and niche mechanisms as expected, but we identified a mass effect in ephemeral kettle holes only. Flat ephemeral kettle holes can be regarded as meta-ecosystems that strongly depend on seed dispersal and recruitment from a seed bank, whereas neighboring permanent kettle holes have a more stable local species diversity. KW - biodiversity KW - dispersal KW - disturbance KW - landscape diversity KW - life-history traits KW - plant diversity KW - seed bank KW - species assembly KW - wetland vegetation Y1 - 2019 U6 - https://doi.org/10.1002/ece3.4883 SN - 2045-7758 VL - 9 IS - 4 SP - 1898 EP - 1910 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Lozada Gobilard, Sissi Donna A1 - Stang, Susanne A1 - Pirhofer-Walzl, Karin A1 - Kalettka, Thomas A1 - Heinken, Thilo A1 - Schröder, Boris A1 - Eccard, Jana A1 - Jasmin Radha, Jasmin T1 - Environmental filtering predicts plant‐community trait distribution and diversity BT - Kettle holes as models of meta‐community systems JF - Ecology and Evolution N2 - Meta‐communities of habitat islands may be essential to maintain biodiversity in anthropogenic landscapes allowing rescue effects in local habitat patches. To understand the species‐assembly mechanisms and dynamics of such ecosystems, it is important to test how local plant‐community diversity and composition is affected by spatial isolation and hence by dispersal limitation and local environmental conditions acting as filters for local species sorting. We used a system of 46 small wetlands (kettle holes)—natural small‐scale freshwater habitats rarely considered in nature conservation policies—embedded in an intensively managed agricultural matrix in northern Germany. We compared two types of kettle holes with distinct topographies (flatsloped, ephemeral, frequently plowed kettle holes vs. steep‐sloped, more permanent ones) and determined 254 vascular plant species within these ecosystems, as well as plant functional traits and nearest neighbor distances to other kettle holes. Differences in alpha and beta diversity between steep permanent compared with ephemeral flat kettle holes were mainly explained by species sorting and niche processes and mass effect processes in ephemeral flat kettle holes. The plant‐community composition as well as the community trait distribution in terms of life span, breeding system, dispersal ability, and longevity of seed banks significantly differed between the two habitat types. Flat ephemeral kettle holes held a higher percentage of non‐perennial plants with a more persistent seed bank, less obligate outbreeders and more species with seed dispersal abilities via animal vectors compared with steep‐sloped, more permanent kettle holes that had a higher percentage of wind‐dispersed species. In the flat kettle holes, plant‐species richness was negatively correlated with the degree of isolation, whereas no such pattern was found for the permanent kettle holes. Synthesis: Environment acts as filter shaping plant diversity (alpha and beta) and plant‐community trait distribution between steep permanent compared with ephemeral flat kettle holes supporting species sorting and niche mechanisms as expected, but we identified a mass effect in ephemeral kettle holes only. Flat ephemeral kettle holes can be regarded as meta‐ecosystems that strongly depend on seed dispersal and recruitment from a seed bank, whereas neighboring permanent kettle holes have a more stable local species diversity. KW - biodiversity KW - dispersal KW - disturbance KW - landscape diversity KW - life‐history traits KW - plant diversity KW - seed bank KW - species assembly KW - wetland vegetation Y1 - 2019 U6 - https://doi.org/10.1002/ece3.4883 SN - 2045-7758 PB - John Wiley & Sons, Inc. CY - Hoboken ER -