TY - GEN A1 - Reeg, Jette A1 - Heine, Simon A1 - Mihan, Christine A1 - McGee, Sean A1 - Preuss, Thomas G. A1 - Jeltsch, Florian T1 - Herbicide risk assessments of non-target terrestrial plant communities BT - A graphical user interface for the plant community model IBC-grass T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Plants located adjacent to agricultural fields are important for maintaining biodiversity in semi-natural landscapes. To avoid undesired impacts on these plants due to herbicide application on the arable fields, regulatory risk assessments are conducted prior to registration to ensure proposed uses of plant protection products do not present an unacceptable risk. The current risk assessment approach for these non-target terrestrial plants (NTTPs) examines impacts at the individual-level as a surrogate approach for protecting the plant community due to the inherent difficulties of directly assessing population or community level impacts. However, modelling approaches are suitable higher tier tools to upscale individual-level effects to community level. IBC-grass is a sophisticated plant community model, which has already been applied in several studies. However, as it is a console application software, it was not deemed sufficiently user-friendly for risk managers and assessors to be conveniently operated without prior expertise in ecological models. Here, we present a user-friendly and open source graphical user interface (GUI) for the application of IBC-grass in regulatory herbicide risk assessment. It facilitates the use of the plant community model for predicting long-term impacts of herbicide applications on NTTP communities. The GUI offers two options to integrate herbicide impacts: (1) dose responses based on current standard experiments (acc. to testing guidelines) and (2) based on specific effect intensities. Both options represent suitable higher tier options for future risk assessments of NTTPs as well as for research on the ecological relevance of effects. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 874 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-459997 SN - 1866-8372 IS - 874 ER - TY - GEN A1 - Reeg, Jette A1 - Heine, Simon A1 - Mihan, Christine A1 - McGee, Sean A1 - Preuss, Thomas G. A1 - Jeltsch, Florian T1 - Simulation of herbicide impacts on a plant community BT - comparing model predictions of the plant community model IBC-grass to empirical data T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - Background Semi-natural plant communities such as field boundaries play an important ecological role in agricultural landscapes, e.g., provision of refuge for plant and other species, food web support or habitat connectivity. To prevent undesired effects of herbicide applications on these communities and their structure, the registration and application are regulated by risk assessment schemes in many industrialized countries. Standardized individual-level greenhouse experiments are conducted on a selection of crop and wild plant species to characterize the effects of herbicide loads potentially reaching off-field areas on non-target plants. Uncertainties regarding the protectiveness of such approaches to risk assessment might be addressed by assessment factors that are often under discussion. As an alternative approach, plant community models can be used to predict potential effects on plant communities of interest based on extrapolation of the individual-level effects measured in the standardized greenhouse experiments. In this study, we analyzed the reliability and adequacy of the plant community model IBC-grass (individual-based plant community model for grasslands) by comparing model predictions with empirically measured effects at the plant community level. Results We showed that the effects predicted by the model IBC-grass were in accordance with the empirical data. Based on the species-specific dose responses (calculated from empirical effects in monocultures measured 4 weeks after application), the model was able to realistically predict short-term herbicide impacts on communities when compared to empirical data. Conclusion The results presented in this study demonstrate an approach how the current standard greenhouse experiments—measuring herbicide impacts on individual-level—can be coupled with the model IBC-grass to estimate effects on plant community level. In this way, it can be used as a tool in ecological risk assessment. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 528 KW - Plant community model KW - Non-target terrestrial plants KW - Community-level effects KW - Herbicide risk assessment KW - Individual-based modeling Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-423039 SN - 1866-8372 IS - 528 ER -