TY - JOUR A1 - Halamek, Jan A1 - Teller, Carsten A1 - Zeravik, Jiri A1 - Fournier, Didier A1 - Makower, Alexander A1 - Scheller, Frieder W. T1 - Characterization of binding of cholinesterases to surface immobilized ligands N2 - We summarize here the development of various piezoelectric biosensors utilizing cholinesterase (ChE) as the recognition element. In our work we studied the interaction between cholinesterase and its ligands (propidium, carnitine, benzylgonine-1,8-diamino-3,4-dioxaoctane (BZE-DADOO) and paraoxon). The sensor modification was based on a self-assembled monolayer (SAM) of a thiol compound (11-mercaptoundecanoic acid) on the gold electrode and the subsequent covalent coupling of the cholinesterase ligand to this SAM. The ligand-modified piezoelectric sensors were placed in a flow system to allow the on-line monitoring of cholinesterase binding and the enzymatic activity quantification by amperometry. Cholinesterases from different species-acetylcholinesterase (AChE) from Electrophorus electricus , AChE from Drosophila melanogaster , and butyrylcholinesterase (BChE) of human origin-were tested on the various immobilized ligands. Our research allowed the development of a competitive assay for the detection of organophosphates in river water samples using the BZE-DADOO-modified piezosensor. Another direction of research was pointed on the characterization of the interactions between ChE and its ligands. The kinetic binding constants were derived using a one- to-one binding model Y1 - 2006 UR - http://www.informaworld.com/openurl?genre=journal&issn=0003-2719 U6 - https://doi.org/10.1080/00032710600713107 SN - 0003-2719 ER -