TY - JOUR A1 - Brovkin, Victor A1 - Claussen, Martin A1 - Driesschaert, Emmanuelle A1 - Fichefet, Thierry A1 - Kicklighter, David Wesley A1 - Loutre, Marie-France A1 - Matthews, H. Damon A1 - Ramankutty, Navin Delire A1 - Schaeffer, Michiel A1 - Sokolov, Andrei T1 - Biogeophysical effects of historical land cover changes simulated by six Earth system models of intermediate complexity N2 - Six Earth system models of intermediate complexity that are able to simulate interaction between atmosphere, ocean, and land surface, were forced with a scenario of land cover changes during the last millennium. In response to historical deforestation of about 18 million sq km, the models simulate a decrease in global mean annual temperature in the range of 0.13-0.25 degrees C. The rate of this cooling accelerated during the 19th century, reached a maximum in the first half of the 20th century, and declined at the end of the 20th century. This trend is explained by temporal and spatial dynamics of land cover changes, as the effect of deforestation on temperature is less pronounced for tropical than for temperate regions, and reforestation in the northern temperate areas during the second part of the 20th century partly offset the cooling trend. In most of the models, land cover changes lead to a decline in annual land evapotranspiration, while seasonal changes are rather equivocal because of spatial shifts in convergence zones. In the future, reforestation might be chosen as an option for the enhancement of terrestrial carbon sequestration. Our study indicates that biogeophysical mechanisms need to be accounted for in the assessment of land management options for climate change mitigation Y1 - 2006 UR - http://www.springerlink.com/content/100405 U6 - https://doi.org/10.1007/s00382-005-0092-6 SN - 0930-7575 ER -