TY - JOUR A1 - Aberle-Malzahn, Nicole A1 - Bauer, Barbara A1 - Lewandowska, A. A1 - Gaedke, Ursula A1 - Sommer, U. T1 - Warming induces shifts in microzooplankton phenology and reduces time-lags between phytoplankton and protozoan production JF - Marine biology : international journal on life in oceans and coastal waters N2 - Indoor mesocosm experiments were conducted to test for potential climate change effects on the spring succession of Baltic Sea plankton. Two different temperature (Delta 0 A degrees C and Delta 6 A degrees C) and three light scenarios (62, 57 and 49 % of the natural surface light intensity on sunny days), mimicking increasing cloudiness as predicted for warmer winters in the Baltic Sea region, were simulated. By combining experimental and modeling approaches, we were able to test for a potential dietary mismatch between phytoplankton and zooplankton. Two general predator-prey models, one representing the community as a tri-trophic food chain and one as a 5-guild food web were applied to test for the consequences of different temperature sensitivities of heterotrophic components of the plankton. During the experiments, we observed reduced time-lags between the peaks of phytoplankton and protozoan biomass in response to warming. Microzooplankton peak biomass was reached by 2.5 day A degrees C-1 earlier and occurred almost synchronously with biomass peaks of phytoplankton in the warm mesocosms (Delta 6 A degrees C). The peak magnitudes of microzooplankton biomass remained unaffected by temperature, and growth rates of microzooplankton were higher at Delta 6 A degrees C (mu(a dagger 0 A degrees C) = 0.12 day(-1) and mu(a dagger 6 A degrees C) = 0.25 day(-1)). Furthermore, warming induced a shift in microzooplankton phenology leading to a faster species turnover and a shorter window of microzooplankton occurrence. Moderate differences in the light levels had no significant effect on the time-lags between autotrophic and heterotrophic biomass and on the timing, biomass maxima and growth rate of microzooplankton biomass. Both models predicted reduced time-lags between the biomass peaks of phytoplankton and its predators (both microzooplankton and copepods) with warming. The reduction of time-lags increased with increasing Q(10) values of copepods and protozoans in the tritrophic food chain. Indirect trophic effects modified this pattern in the 5-guild food web. Our study shows that instead of a mismatch, warming might lead to a stronger match between protist grazers and their prey altering in turn the transfer of matter and energy toward higher trophic levels. Y1 - 2012 U6 - https://doi.org/10.1007/s00227-012-1947-0 SN - 0025-3162 VL - 159 IS - 11 SP - 2441 EP - 2453 PB - Springer CY - New York ER - TY - JOUR A1 - Bauer, Barbara A1 - Sommer, Ulrich A1 - Gaedke, Ursula T1 - High predictability of spring phytoplankton biomass in mesocosms at the species, functional group and community level JF - Freshwater biology N2 - 1. Models aim to predict phytoplankton dynamics based on observed initial conditions and a set of equations and parameters. However, our knowledge about initial conditions in nature is never perfect. Thus, if phytoplankton dynamics are sensitive to small variations in initial conditions, they are difficult to predict. 2. We used time-series data from indoor mesocosm experiments with natural phyto- and zooplankton communities to quantify the extent to which small initial differences in the species, functional group and community biomass in parallel treatments were amplified or buffered over time. We compared the differences in dynamics between replicates and among all mesocosms of 1year. 3. Temperature-sensitive grazing during the exponential growth phase of phytoplankton caused divergence. In contrast, negative density dependence caused convergence. 4. Mean differences in biomass between replicates were similar for all hierarchical levels. This indicates that differences in their initial conditions were amplified to the same extent. Even though large differences in biomass occasionally occurred between replicates for a short time, dynamics returned to the same path at all hierarchical levels. This suggests that internal feedback mechanisms make the spring development of phytoplankton highly predictable. KW - divergence KW - hierarchical level KW - mesocosms KW - predictability KW - replicates Y1 - 2013 U6 - https://doi.org/10.1111/j.1365-2427.2012.02780.x SN - 0046-5070 VL - 58 IS - 3 SP - 588 EP - 596 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Bauer, Barbara A1 - Vos, Matthijs A1 - Klauschies, Toni A1 - Gaedke, Ursula T1 - Diversity, functional similarity, and top-down control drive synchronization and the reliability of ecosystem function JF - The American naturalist : a bi-monthly journal devoted to the advancement and correlation of the biological sciences N2 - The concept that diversity promotes reliability of ecosystem function depends on the pattern that community-level biomass shows lower temporal variability than species-level biomasses. However, this pattern is not universal, as it relies on compensatory or independent species dynamics. When in contrast within--trophic level synchronization occurs, variability of community biomass will approach population-level variability. Current knowledge fails to integrate how species richness, functional distance between species, and the relative importance of predation and competition combine to drive synchronization at different trophic levels. Here we clarify these mechanisms. Intense competition promotes compensatory dynamics in prey, but predators may at the same time increasingly synchronize, under increasing species richness and functional similarity. In contrast, predators and prey both show perfect synchronization under strong top-down control, which is promoted by a combination of low functional distance and high net growth potential of predators. Under such conditions, community-level biomass variability peaks, with major negative consequences for reliability of ecosystem function. KW - biodiversity KW - ecosystem services KW - population dynamics KW - predator-prey system KW - species richness KW - synchrony Y1 - 2014 U6 - https://doi.org/10.1086/674906 SN - 0003-0147 SN - 1537-5323 VL - 183 IS - 3 SP - 394 EP - 409 PB - Univ. of Chicago Press CY - Chicago ER - TY - JOUR A1 - Bell, Elanor M. A1 - Weithoff, Guntram A1 - Gaedke, Ursula T1 - Temporal dynamics and growth of Actinophrys sol (Sarcodina: Heliozoa), the top predator in an extremely acidic lake N2 - 1. The in situ abundance, biomass and mean cell volume of Actinophrys sol (Sarcodina: Heliozoa), the top predator in an extremely acidic German mining lake (Lake 111; pH 2.65), were determined over three consecutive years (spring to autumn, 2001-03). 2. Actinophrys sol exhibited pronounced temporal and vertical patterns in abundance, biomass and mean cell volume. Increasing from very low spring densities, maxima in abundance and biomass were observed in late June/early July and September. The highest mean abundance recorded during the study was 7 x 10(3) Heliozoa L-1. Heliozoan abundance and biomass were higher in the epilimnion than in the hypolimnion. Actinophrys sol cells from this acidic lake were smaller than individuals of the same species found in other aquatic systems. 3. We determined the growth rate of A. sol using all potential prey items available in, and isolated and cultured from, Lake 111. Prey items included: single-celled and filamentous bacteria of unknown taxonomic affinity, the mixotrophic flagellates Chlamydomonas acidophila and Ochromonas sp., the ciliate Oxytricha sp. and the rotifers Elosa worallii and Cephalodella hoodi. Actinophrys sol fed over a wide-size spectrum from bacteria to metazoans. Positive growth was not supported by all naturally available prey. Actinophrys sol neither increased in cell number (k) nor biomass (k(b)) when starved, with low concentrations of single-celled bacteria or with the alga Ochromonas sp. Positive growth was achieved with single- celled bacteria (k = 0.22 +/- 0.02 d(-1); k(b) = -0.06 +/- 0.02 d(-1)) and filamentous bacteria (k = 0.52 +/- < 0.01 d(- 1); k(b) = 0.66 d(-1)) at concentrations greater than observed in situ, and the alga C. acidophila (up to k = 0.43 +/- 0.03 d(-1); k(b) = 0.44 +/- 0.04 d(-1)), the ciliate Oxytricha sp. (k = 0.34 +/- 0.01 d(-1)) and in mixed cultures containing rotifers and C. acidophila (k = 0.23 +/- 0.02-0.32 +/- 0.02 d(-1); maximum k(b) = 0.42 +/- 0.05 d(-1)). The individual- and biomass-based growth of A. sol was highest when filamentous bacteria were provided. 4. Existing quantitative carbon flux models for the Lake 111 food web can be updated in light of our results. Actinophrys sol are omnivorous predators supported by a mixed diet of filamentous bacteria and C. acidophila in the epilimnion. Heliozoa are important components in the planktonic food webs of 'extreme' environments Y1 - 2006 UR - http://www3.interscience.wiley.com/cgi-bin/issn?DESCRIPTOR=PRINTISSN&VALUE=0046-5070 U6 - https://doi.org/10.1111/j.1365-2427.2006.01561.x SN - 0046-5070 ER - TY - JOUR A1 - Bengfort, Michael A1 - van Velzen, Ellen A1 - Gaedke, Ursula T1 - Slight phenotypic variation in predators and prey causes complex predator-prey oscillations JF - Ecological Complexity N2 - Predator-prey oscillations are expected to show a 1/4-phase lag between predator and prey. However, observed dynamics of natural or experimental predator-prey systems are often more complex. A striking but hardly studied example are sudden interruptions of classic 1/4-lag cycles with periods of antiphase oscillations, or periods without any regular predator-prey oscillations. These interruptions occur for a limited time before the system reverts to regular 1/4-lag oscillations, thus yielding intermittent cycles. Reasons for this behaviour are often difficult to reveal in experimental systems. Here we test the hypothesis that such complex dynamical behaviour may result from minor trait variation and trait adaptation in both the prey and predator, causing recurrent small changes in attack rates that may be hard to capture by empirical measurements. Using a model structure where the degree of trait variation in the predator can be explicitly controlled, we show that a very limited amount of adaptation resulting in 10-15% temporal variation in attack rates is already sufficient to generate these intermittent dynamics. Such minor variation may be present in experimental predator-prey systems, and may explain disruptions in regular 1/4-lag oscillations. KW - Predator-prey cycles KW - Phase relationships KW - Intermittent cycles KW - Adaptive traits KW - Eco-evolutionary dynamics KW - Complex dynamics Y1 - 2017 U6 - https://doi.org/10.1016/j.ecocom.2017.06.003 SN - 1476-945X SN - 1476-9840 VL - 31 SP - 115 EP - 124 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Blasius, Bernd A1 - Rudolf, Lars A1 - Weithoff, Guntram A1 - Gaedke, Ursula A1 - Fussmann, Gregor F. T1 - Long-term cyclic persistence in an experimental predator-prey system JF - Nature : the international weekly journal of science N2 - Predator-prey cycles rank among the most fundamental concepts in ecology, are predicted by the simplest ecological models and enable, theoretically, the indefinite persistence of predator and prey(1-4). However, it remains an open question for how long cyclic dynamics can be self-sustained in real communities. Field observations have been restricted to a few cycle periods(5-8) and experimental studies indicate that oscillations may be short-lived without external stabilizing factors(9-19). Here we performed microcosm experiments with a planktonic predator-prey system and repeatedly observed oscillatory time series of unprecedented length that persisted for up to around 50 cycles or approximately 300 predator generations. The dominant type of dynamics was characterized by regular, coherent oscillations with a nearly constant predator-prey phase difference. Despite constant experimental conditions, we also observed shorter episodes of irregular, non-coherent oscillations without any significant phase relationship. However, the predator-prey system showed a strong tendency to return to the dominant dynamical regime with a defined phase relationship. A mathematical model suggests that stochasticity is probably responsible for the reversible shift from coherent to non-coherent oscillations, a notion that was supported by experiments with external forcing by pulsed nutrient supply. Our findings empirically demonstrate the potential for infinite persistence of predator and prey populations in a cyclic dynamic regime that shows resilience in the presence of stochastic events. Y1 - 2019 U6 - https://doi.org/10.1038/s41586-019-1857-0 SN - 0028-0836 SN - 1476-4687 VL - 577 IS - 7789 SP - 226 EP - 230 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Boit, Alice A1 - Gaedke, Ursula T1 - Benchmarking successional progress in a quantitative food web JF - PLoS one N2 - Central to ecology and ecosystem management, succession theory aims to mechanistically explain and predict the assembly and development of ecological communities. Yet processes at lower hierarchical levels, e. g. at the species and functional group level, are rarely mechanistically linked to the under-investigated system-level processes which drive changes in ecosystem properties and functioning and are comparable across ecosystems. As a model system for secondary succession, seasonal plankton succession during the growing season is readily observable and largely driven autogenically. We used a long-term dataset from large, deep Lake Constance comprising biomasses, auto-and heterotrophic production, food quality, functional diversity, and mass-balanced food webs of the energy and nutrient flows between functional guilds of plankton and partly fish. Extracting population-and system-level indices from this dataset, we tested current hypotheses about the directionality of successional progress which are rooted in ecosystem theory, the metabolic theory of ecology, quantitative food web theory, thermodynamics, and information theory. Our results indicate that successional progress in Lake Constance is quantifiable, passing through predictable stages. Mean body mass, functional diversity, predator-prey weight ratios, trophic positions, system residence times of carbon and nutrients, and the complexity of the energy flow patterns increased during succession. In contrast, both the mass-specific metabolic activity and the system export decreased, while the succession rate exhibited a bimodal pattern. The weighted connectance introduced here represents a suitable index for assessing the evenness and interconnectedness of energy flows during succession. Diverging from earlier predictions, ascendency and eco-exergy did not increase during succession. Linking aspects of functional diversity to metabolic theory and food web complexity, we reconcile previously disjoint bodies of ecological theory to form a complete picture of successional progress within a pelagic food web. This comprehensive synthesis may be used as a benchmark for quantifying successional progress in other ecosystems. Y1 - 2014 U6 - https://doi.org/10.1371/journal.pone.0090404 SN - 1932-6203 VL - 9 IS - 2 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Boit, Alice A1 - Martinez, Neo D. A1 - Williams, Richard J. A1 - Gaedke, Ursula T1 - Mechanistic theory and modelling of complex food-web dynamics in Lake Constance JF - Ecology letters N2 - Mechanistic understanding of consumer-resource dynamics is critical to predicting the effects of global change on ecosystem structure, function and services. Such understanding is severely limited by mechanistic models inability to reproduce the dynamics of multiple populations interacting in the field. We surpass this limitation here by extending general consumer-resource network theory to the complex dynamics of a specific ecosystem comprised by the seasonal biomass and production patterns in a pelagic food web of a large, well-studied lake. We parameterised our allometric trophic network model of 24 guilds and 107 feeding relationships using the lakes food web structure, initial spring biomasses and body-masses. Adding activity respiration, the detrital loop, minimal abiotic forcing, prey resistance and several empirically observed rates substantially increased the model's fit to the observed seasonal dynamics and the size-abundance distribution. This process illuminates a promising approach towards improving food-web theory and dynamic models of specific habitats. KW - Allometric Trophic Network model KW - community ecology KW - food web KW - multi-trophic dynamics KW - seasonal plankton succession Y1 - 2012 U6 - https://doi.org/10.1111/j.1461-0248.2012.01777.x SN - 1461-023X VL - 15 IS - 6 SP - 594 EP - 602 PB - Wiley-Blackwell CY - Hoboken ER - TY - GEN A1 - Ceulemans, Ruben A1 - Gaedke, Ursula A1 - Klauschies, Toni A1 - Guill, Christian T1 - The effects of functional diversity on biomass production, variability, and resilience of ecosystem functions in a tritrophic system T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - Diverse communities can adjust their trait composition to altered environmental conditions, which may strongly influence their dynamics. Previous studies of trait-based models mainly considered only one or two trophic levels, whereas most natural system are at least tritrophic. Therefore, we investigated how the addition of trait variation to each trophic level influences population and community dynamics in a tritrophic model. Examining the phase relationships between species of adjacent trophic levels informs about the strength of top-down or bottom-up control in non-steadystate situations. Phase relationships within a trophic level highlight compensatory dynamical patterns between functionally different species, which are responsible for dampening the community temporal variability. Furthermore, even without trait variation, our tritrophic model always exhibits regions with two alternative states with either weak or strong nutrient exploitation, and correspondingly low or high biomass production at the top level. However, adding trait variation increased the basin of attraction of the high-production state, and decreased the likelihood of a critical transition from the high- to the lowproduction state with no apparent early warning signals. Hence, our study shows that trait variation enhances resource use efficiency, production, stability, and resilience of entire food webs. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 744 KW - early-warning signals KW - top-down control KW - community ecology KW - regime shifts KW - food webs KW - compensatory dynamics KW - consumer diversity KW - metabolic theory KW - rapid evolution KW - stable states Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-435439 SN - 1866-8372 IS - 744 ER - TY - JOUR A1 - Ceulemans, Ruben A1 - Gaedke, Ursula A1 - Klauschies, Toni A1 - Guill, Christian T1 - The effects of functional diversity on biomass production, variability, and resilience of ecosystem functions in a tritrophic system JF - Scientific Reports N2 - Diverse communities can adjust their trait composition to altered environmental conditions, which may strongly influence their dynamics. Previous studies of trait-based models mainly considered only one or two trophic levels, whereas most natural system are at least tritrophic. Therefore, we investigated how the addition of trait variation to each trophic level influences population and community dynamics in a tritrophic model. Examining the phase relationships between species of adjacent trophic levels informs about the strength of top-down or bottom-up control in non-steadystate situations. Phase relationships within a trophic level highlight compensatory dynamical patterns between functionally different species, which are responsible for dampening the community temporal variability. Furthermore, even without trait variation, our tritrophic model always exhibits regions with two alternative states with either weak or strong nutrient exploitation, and correspondingly low or high biomass production at the top level. However, adding trait variation increased the basin of attraction of the high-production state, and decreased the likelihood of a critical transition from the high- to the lowproduction state with no apparent early warning signals. Hence, our study shows that trait variation enhances resource use efficiency, production, stability, and resilience of entire food webs. KW - early-warning signals KW - top-down control KW - community ecology KW - regime shifts KW - food webs KW - compensatory dynamics KW - consumer diversity KW - metabolic theory KW - rapid evolution KW - stable states Y1 - 2019 U6 - https://doi.org/10.1038/s41598-019-43974-1 SN - 2045-2322 VL - 9 PB - Macmillan Publishers Limited CY - London ER -