TY - JOUR A1 - Al-Naji, Majd A1 - Schlaad, Helmut A1 - Antonietti, Markus T1 - New (and old) monomers from biorefineries to make polymer chemistry more sustainable JF - Macromolecular rapid communications N2 - This opinion article describes recent approaches to use the "biorefinery" concept to lower the carbon footprint of typical mass polymers, by replacing parts of the fossil monomers with similar or even the same monomer made from regrowing dendritic biomass. Herein, the new and green catalytic synthetic routes are for lactic acid (LA), isosorbide (IS), 2,5-furandicarboxylic acid (FDCA), and p-xylene (pXL). Furthermore, the synthesis of two unconventional lignocellulosic biomass derivable monomers, i.e., alpha-methylene-gamma-valerolactone (MeGVL) and levoglucosenol (LG), are presented. All those have the potential to enter in a cost-effective way, also the mass market and thereby recover lost areas for polymer materials. The differences of catalytic unit operations of the biorefinery are also discussed and the challenges that must be addressed along the synthesis path of each monomers. KW - biodegradable polymers KW - biorefineries KW - carbohydrate‐ based KW - monomers KW - green polymers KW - lignocellulosic biomass Y1 - 2020 U6 - https://doi.org/10.1002/marc.202000485 SN - 1022-1336 SN - 1521-3927 VL - 42 IS - 3 PB - Wiley-VCH CY - Weinheim ER - TY - GEN A1 - Al-Naji, Majd A1 - Schlaad, Helmut A1 - Antonietti, Markus T1 - New (and old) monomers from biorefineries to make polymer chemistry more sustainable T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - This opinion article describes recent approaches to use the "biorefinery" concept to lower the carbon footprint of typical mass polymers, by replacing parts of the fossil monomers with similar or even the same monomer made from regrowing dendritic biomass. Herein, the new and green catalytic synthetic routes are for lactic acid (LA), isosorbide (IS), 2,5-furandicarboxylic acid (FDCA), and p-xylene (pXL). Furthermore, the synthesis of two unconventional lignocellulosic biomass derivable monomers, i.e., alpha-methylene-gamma-valerolactone (MeGVL) and levoglucosenol (LG), are presented. All those have the potential to enter in a cost-effective way, also the mass market and thereby recover lost areas for polymer materials. The differences of catalytic unit operations of the biorefinery are also discussed and the challenges that must be addressed along the synthesis path of each monomers. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1385 KW - biodegradable polymers KW - biorefineries KW - carbohydrate‐ based KW - monomers KW - green polymers KW - lignocellulosic biomass Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-570614 SN - 1866-8372 IS - 3 ER - TY - JOUR A1 - Antonietti, Markus A1 - Lopez-Salas, Nieves A1 - Primo, Ana T1 - Adjusting the Structure and Electronic Properties of Carbons for Metal-Free Carbocatalysis of Organic Transformations JF - Advanced materials N2 - Carbon nanomaterials doped with some other lightweight elements were recently described as powerful, heterogeneous, metal-free organocatalysts, adding to their high performance in electrocatalysis. Here, recent observations in traditional catalysis are reviewed, and the underlying reaction mechanisms of the catalyzed organic transformations are explored. In some cases, these are due to specific active functional sites, but more generally the catalytic activity relates to collective properties of the conjugated nanocarbon frameworks and the electron transfer from and to the catalytic centers and substrates. It is shown that the !earnings are tightly related to those of electrocatalysis; i.e., the search for better electrocatalysts also improves chemocatalysis, and vice versa. Carbon-carbon heterojunction effects and some perspectives on future possibilities are discussed at the end. KW - active sites KW - carbocatalysis KW - carbon electrical collective properties KW - metal-free KW - nanocarbon materials Y1 - 2018 U6 - https://doi.org/10.1002/adma.201805719 SN - 0935-9648 SN - 1521-4095 VL - 31 IS - 13 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Brosnan, Sarah M. A1 - Schlaad, Helmut A1 - Antonietti, Markus T1 - Aqueous Self-Assembly of Purely Hydrophilic Block Copolymers into Giant Vesicles JF - Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition N2 - Self-assembly of macromolecules is fundamental to life itself, and historically, these systems have been primitively mimicked by the development of amphiphilic systems, driven by the hydrophobic effect. Herein, we demonstrate that self-assembly of purely hydrophilic systems can be readily achieved with similar ease and success. We have synthesized double hydrophilic block copolymers from polysaccharides and poly(ethylene oxide) or poly(sarcosine) to yield high molar mass diblock copolymers through oxime chemistry. These hydrophilic materials can easily assemble into nanosized (<500nm) and microsized (>5m) polymeric vesicles depending on concentration and diblock composition. Because of the solely hydrophilic nature of these materials, we expect them to be extraordinarily water permeable systems that would be well suited for use as cellular mimics. KW - block copolymers KW - polymersomes KW - polysaccharides KW - self-assembly KW - vesicles Y1 - 2015 U6 - https://doi.org/10.1002/anie.201502100 SN - 1433-7851 SN - 1521-3773 VL - 54 IS - 33 SP - 9715 EP - 9718 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Cazelles, R. A1 - Lalaoui, N. A1 - Hartmann, Tobias A1 - Leimkühler, Silke A1 - Wollenberger, Ursula A1 - Antonietti, Markus A1 - Cosnier, S. T1 - Ready to use bioinformatics analysis as a tool to predict immobilisation strategies for protein direct electron transfer (DET) JF - Polymer : the international journal for the science and technology of polymers KW - Bioinformatic KW - Bioelectrocatalysis KW - Electron transfer KW - Dehydrogenase KW - Nicotinamide Y1 - 2016 U6 - https://doi.org/10.1016/j.bios.2016.04.078 SN - 0956-5663 SN - 1873-4235 VL - 85 SP - 90 EP - 95 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Chen, Lu A1 - Yan, Runyu A1 - Oschatz, Martin A1 - Jiang, Lei A1 - Antonietti, Markus A1 - Xiao, Kai T1 - Ultrathin 2D graphitic carbon nitride on metal films BT - underpotential sodium deposition in adlayers for sodium-ion batteries JF - Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition N2 - Efficient and low-cost anode materials for the sodium-ion battery are highly desired to enable more economic energy storage. Effects on an ultrathin carbon nitride film deposited on a copper metal electrode are presented. The combination of effects show an unusually high capacity to store sodium metal. The g-C3N4 film is as thin as 10 nm and can be fabricated by an efficient, facile, and general chemical-vapor deposition method. A high reversible capacity of formally up to 51 Ah g(-1) indicates that the Na is not only stored in the carbon nitride as such, but that carbon nitride activates also the metal for reversible Na-deposition, while forming at the same time an solid electrolyte interface layer avoiding direct contact of the metallic phase with the liquid electrolyte. KW - 2D films KW - carbon nitride KW - chemical vapor deposition KW - sodium-ion KW - batteries KW - underpotential deposition Y1 - 2020 U6 - https://doi.org/10.1002/anie.202000314 SN - 1433-7851 SN - 1521-3773 VL - 59 IS - 23 SP - 9067 EP - 9073 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Chen, Zupeng A1 - Savateev, Aleksandr A1 - Pronkin, Sergey A1 - Papaefthimiou, Vasiliki A1 - Wolff, Christian Michael A1 - Willinger, Marc Georg A1 - Willinger, Elena A1 - Neher, Dieter A1 - Antonietti, Markus A1 - Dontsova, Dariya T1 - "The Easier the Better" Preparation of Efficient Photocatalysts-Metastable Poly(heptazine imide) Salts JF - Advanced materials N2 - Cost-efficient, visible-light-driven hydrogen production from water is an attractive potential source of clean, sustainable fuel. Here, it is shown that thermal solid state reactions of traditional carbon nitride precursors (cyanamide, melamine) with NaCl, KCl, or CsCl are a cheap and straightforward way to prepare poly(heptazine imide) alkali metal salts, whose thermodynamic stability decreases upon the increase of the metal atom size. The chemical structure of the prepared salts is confirmed by the results of X-ray photoelectron and infrared spectroscopies, powder X-ray diffraction and electron microscopy studies, and, in the case of sodium poly(heptazine imide), additionally by atomic pair distribution function analysis and 2D powder X-ray diffraction pattern simulations. In contrast, reactions with LiCl yield thermodynamically stable poly(triazine imides). Owing to the metastability and high structural order, the obtained heptazine imide salts are found to be highly active photo-catalysts in Rhodamine B and 4-chlorophenol degradation, and Pt-assisted sacrificial water reduction reactions under visible light irradiation. The measured hydrogen evolution rates are up to four times higher than those provided by a benchmark photocatalyst, mesoporous graphitic carbon nitride. Moreover, the products are able to photocatalytically reduce water with considerable reaction rates, even when glycerol is used as a sacrificial hole scavenger. KW - carbon nitride KW - glycerol oxidation KW - mesocrystals KW - poly(heptazine imide) KW - water reduction reactions Y1 - 2017 U6 - https://doi.org/10.1002/adma.201700555 SN - 0935-9648 SN - 1521-4095 VL - 29 SP - 21800 EP - 21806 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Harmanli, İpek A1 - Tarakina, Nadezda A1 - Antonietti, Markus A1 - Oschatz, Martin T1 - "Giant" nitrogen uptake in ionic liquids confined in carbon pores JF - Journal of the American Chemical Society N2 - Ionic liquids are well known for their high gas absorption capacity. It is shown that this is not a solvent constant, but can be enhanced by another factor of 10 by pore confinement, here of the ionic liquid (IL) 1-ethyl-3-methylimidazolium acetate (EmimOAc) in the pores of carbon materials. A matrix of four different carbon compounds with micro- and mesopores as well as with and without nitrogen doping is utilized to investigate the influence of the carbons structure on the nitrogen uptake in the pore-confined EmimOAc. In general, the absorption is most improved for IL in micropores and in nitrogen-doped carbon. This effect is so large that it is already seen in TGA and DSC experiments. Due to the low vapor pressure of the IL, standard volumetric sorption experiments can be used to quantify details of this effect. It is reasoned that it is the change of the molecular arrangement of the ions in the restricted space of the pores that creates additional free volume to host molecular nitrogen. Y1 - 2021 U6 - https://doi.org/10.1021/jacs.1c00783 SN - 0002-7863 SN - 1520-5126 VL - 143 IS - 25 SP - 9377 EP - 9384 PB - American Chemical Society CY - Washington ER - TY - GEN A1 - Ilic, Ivan K. A1 - Tsouka, Alexandra A1 - Perovic, Milena A1 - Hwang, Jinyeon A1 - Heil, Tobias A1 - Löffler, Felix A1 - Oschatz, Martin A1 - Antonietti, Markus A1 - Liedel, Clemens T1 - Sustainable cathodes for Lithium-ion energy storage devices based on tannic acid-toward ecofriendly energy storage T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The use of organic materials with reversible redox activity holds enormous potential for next-generation Li-ion energy storage devices. Yet, most candidates are not truly sustainable, i.e., not derived from renewable feedstock or made in benign reactions. Here an attempt is reported to resolve this issue by synthesizing an organic cathode material from tannic acid and microporous carbon derived from biomass. All constituents, including the redox-active material and conductive carbon additive, are made from renewable resources. Using a simple, sustainable fabrication method, a hybrid material is formed. The low cost and ecofriendly material shows outstanding performance with a capacity of 108 mAh g(-1) at 0.1 A g(-1) and low capacity fading, retaining approximately 80% of the maximum capacity after 90 cycles. With approximately 3.4 V versus Li+/Li, the cells also feature one of the highest reversible redox potentials reported for biomolecular cathodes. Finally, the quinone-catecholate redox mechanism responsible for the high capacity of tannic acid is confirmed by electrochemical characterization of a model compound similar to tannic acid but without catecholic groups. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1366 KW - biomass KW - electrochemistry KW - energy storage KW - redox chemistry KW - sustainability KW - tannic acid Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-570560 SN - 1866-8372 IS - 1 ER - TY - JOUR A1 - Ilic, Ivan K. A1 - Tsouka, Alexandra A1 - Perovic, Milena A1 - Hwang, Jinyeon A1 - Heil, Tobias A1 - Löffler, Felix A1 - Oschatz, Martin A1 - Antonietti, Markus A1 - Liedel, Clemens T1 - Sustainable cathodes for Lithium-ion energy storage devices based on tannic acid-toward ecofriendly energy storage JF - Advanced sustainable systems N2 - The use of organic materials with reversible redox activity holds enormous potential for next-generation Li-ion energy storage devices. Yet, most candidates are not truly sustainable, i.e., not derived from renewable feedstock or made in benign reactions. Here an attempt is reported to resolve this issue by synthesizing an organic cathode material from tannic acid and microporous carbon derived from biomass. All constituents, including the redox-active material and conductive carbon additive, are made from renewable resources. Using a simple, sustainable fabrication method, a hybrid material is formed. The low cost and ecofriendly material shows outstanding performance with a capacity of 108 mAh g(-1) at 0.1 A g(-1) and low capacity fading, retaining approximately 80% of the maximum capacity after 90 cycles. With approximately 3.4 V versus Li+/Li, the cells also feature one of the highest reversible redox potentials reported for biomolecular cathodes. Finally, the quinone-catecholate redox mechanism responsible for the high capacity of tannic acid is confirmed by electrochemical characterization of a model compound similar to tannic acid but without catecholic groups. KW - biomass KW - electrochemistry KW - energy storage KW - redox chemistry KW - sustainability KW - tannic acid Y1 - 2020 U6 - https://doi.org/10.1002/adsu.202000206 SN - 2366-7486 VL - 5 IS - 1 PB - Wiley-VCH CY - Weinheim ER -