TY - JOUR A1 - Andermann, Christoff A1 - Crave, Alain A1 - Gloaguen, Richard A1 - Davy, Philippe A1 - Bonnet, Stephane T1 - Connecting source and transport: Suspended sediments in the Nepal Himalayas JF - Earth & planetary science letters N2 - Understanding the dynamics of sediment fluxes is a key issue to constrain modern erosion rates in mountain belts and determine the still debated level of control exerted by precipitation, topography and tectonics. The well defined monsoon seasonality in the Himalayas, together with active tectonics and strong relief provide an ideal environment to assess these possible interactions. For this purpose, we present a new compilation of daily suspended sediment data for 12 stations of the major rivers of the Nepal Himalayas. We analyze the relationships of sediment transport with daily river discharge and precipitation data as well as with morphometric parameters. We show that suspended sediment concentrations vary systematically through the seasons and asynchronously to river discharge displaying a hysteresis effect. This clockwise hysteresis effect disappears when suspended sediment fluxes are directly compared with direct storm discharge. Therefore we attribute the hysteresis effect to groundwater dilution rather than a sediment supply limitation. We infer a rating model to calculate erosion rates directly from long river discharge chronicles. We show that, when normalized by drainage area and mean sediment flux, all rivers exhibit the same trend. This similarity implies that all river basins have the same erosion behavior, independent of location, size and catchment characteristics. Erosion rates calculated from suspended sediment fluxes range between 0.1 and 2.8 mm/yr. The erosion rates of the three main basins of Nepal are in the range 0.9-1.5 mm/yr. Erosion rates in the Higher Himalayas are relatively low ( <0.5 mm/yr, except for Kali Gandaki), while in the Lesser Himalayas they range from 0.2 to 2 mm/yr. We propose that material transport in the rivers depends on hillslope sediment supply, which is, in turn, controlled by those rainfalls producing direct runoff. In other words, the rivers in the Nepal Himalayas are supply-limited and the hillsopes as a contributing source are transport-limited. We also show that erosion processes are not as much controlled by infrequently occurring extreme precipitation events, than by moderate ones with a high recurrence interval. KW - suspended sediment transport KW - Himalayas KW - erosion KW - sediment flux hysteresis KW - monsoon river hydrology KW - Himalayan rivers Y1 - 2012 U6 - https://doi.org/10.1016/j.epsl.2012.06.059 SN - 0012-821X VL - 351 SP - 158 EP - 170 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Brunello, Camilla Francesca A1 - Andermann, Christoff A1 - Helle, Gerhard A1 - Comiti, Francesco A1 - Tonon, Giustino A1 - Tiwari, Achyut A1 - Hovius, Niels ED - Vance, D. T1 - Hydroclimatic seasonality recorded by tree ring delta O-18 signature across a Himalayan altitudinal transect JF - Earth & planetary science letters N2 - Water stable isotope ratios of tropical precipitation predominantly reflect moisture source and precipitation intensity. Trees can incorporate the isotopic signals into annual tree-ring cellulose records, permitting reconstruction of the temporal changes of hydroclimate over decades to millennia. This is especially valuable in the Himalayas where the understanding of monsoon dynamics is limited by the lack of a dense and representative observational network. We have analyzed tree ring delta O-18 records from two distinct physiographic sites along the upper Kali Gandaki valley in the central Nepal Himalayas, representing the wet High-Himalayas and the Trans-Himalayan dryland to the north. Empirical correlations and regression analyses were compared to an in-situ calibrated oxygen isotope fractionation model, exploring the relationships between tree ring delta O-18 and seasonal-mean variability of hydroclimatic forcing at the different locations. For this purpose, gridded precipitation data from the Asian rain gauge dataset APHRODITE, as well as high resolution onsite observations (relative humidity, air temperature, delta O-18 of precipitation and radial tree growth) were used. We found that two distinct sets of meteorological values, reflecting pre-monsoon and monsoon conditions, are needed to reproduce the measured tree ring delta O-18 values from the High-Himalayan site, but that a single set of monsoonal values performs best for the Trans-Himalayan site. We conclude that Trans-Himalayan trees capture long-term changes in strength of the Indian summer monsoon. In contrast, High-Himalayan tree ring delta(18)Orecords a more complex hydro-climatic signal reflecting both pre-monsoon and monsoon seasons with very contrasting isotopic signatures of precipitation. This difference in the two hydroclimatic proxy records offers an opportunity to reconstruct first-order hydroclimate conditions, such as local precipitation rates, and to gain new insights into monsoon timing and seasonal water source determination across the Himalayan orographic region. (C) 2019 Elsevier B.V. All rights reserved. KW - Himalayan hydroclimate KW - seasonal precipitation KW - pre-monsoon KW - monsoon onset KW - oxygen fractionation model KW - dendroclimatology Y1 - 2019 U6 - https://doi.org/10.1016/j.epsl.2019.04.030 SN - 0012-821X SN - 1385-013X VL - 518 SP - 148 EP - 159 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Brunello, Camilla Francesca A1 - Andermann, Christoff A1 - Marc, Odin A1 - Schneider, Katharina A. A1 - Comiti, Francesco A1 - Achleitner, Stefan A1 - Hovius, Niels T1 - Annually resolved monsoon onset and withdrawal dates across the Himalayas derived from local precipitation statistics JF - Geophysical research letters N2 - A local and flexible definition of the monsoon season based on hydrological evidence is important for the understanding and management of Himalayan water resources. Here, we present an objective statistical method to retrieve seasonal hydrometeorological transitions. Applied to daily rainfall data (1951-2015), this method shows an average longitudinal delay of similar to 15 days, with later monsoon onset and earlier withdrawal in the western Himalaya, consistent with the continental progression of wet air masses. This delay leads to seasons of different length along the Himalaya and biased precipitation amounts when using uniform calendric monsoon boundaries. In the Central Himalaya annual precipitation has increased, due primarily to an increase of premonsoon precipitation. These findings highlight issues associated with a static definition of monsoon boundaries and call for a deeper understanding of nonmonsoonal precipitation over the Himalayan water tower.
Plain Language Summary Precipitation in the Himalayas determines water availability for the Indian foreland with large socioeconomic implications. Despite its importance, spatial and temporal patterns of precipitation are poorly understood. Here, we estimate the long-term average and trends of seasonal precipitation at the scale of individual catchments draining the Himalayas. We apply a statistical method to detect the timing of hydrometeorological seasons from local precipitation measurements, focusing on monsoon onset and withdrawal. We identify longitudinal and latitudinal delays, resulting in seasons of different length along and across the Himalayas. These spatial patterns and the annual variability of the monsoon boundaries mean that oft-used, fixed calendric dates, for example, 1 June to 30 September, may be inadequate for retrieving monsoon rainfall totals. Moreover, we find that, despite its prominent contribution to annual rainfall totals, the Indian summer monsoon cannot explain the increase of the annual precipitation over the Central Himalayas. Instead, this appears to be mostly driven by changes in premonsoon and winter rainfall. So far, little attention has been paid to premonsoon precipitation, but governed by evaporative processes and surface water availability, it may be enhanced by irrigation and changed land use in the Gangetic foreland. Y1 - 2020 U6 - https://doi.org/10.1029/2020GL088420 SN - 0094-8276 SN - 1944-8007 VL - 47 IS - 23 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Cook, Kristen L. A1 - Andermann, Christoff A1 - Gimbert, Florent A1 - Adhikari, Basanta Raj A1 - Hovius, Niels T1 - Glacial lake outburst floods as drivers of fluvial erosion in the Himalaya JF - Science N2 - Himalayan rivers are frequently hit by catastrophic floods that are caused by the failure of glacial lake and landslide dams; however, the dynamics and long-term impacts of such floods remain poorly understood. We present a comprehensive set of observations that capture the July 2016 glacial lake outburst flood (GLOF) in the Bhotekoshi/Sunkoshi River of Nepal. Seismic records of the flood provide new insights into GLOF mechanics and their ability to mobilize large boulders that otherwise prevent channel erosion. Because of this boulder mobilization, GLOF impacts far exceed those of the annual summer monsoon, and GLOFs may dominate fluvial erosion and channel-hillslope coupling many tens of kilometers downstream of glaciated areas. Long-term valley evolution in these regions may therefore be driven by GLOF frequency and magnitude, rather than by precipitation. Y1 - 2018 U6 - https://doi.org/10.1126/science.aat4981 SN - 0036-8075 SN - 1095-9203 VL - 362 IS - 6410 SP - 53 EP - 57 PB - American Assoc. for the Advancement of Science CY - Washington ER - TY - JOUR A1 - Dietze, Michael A1 - Bell, Rainer A1 - Öztürk, Ugur A1 - Cook, Kristen L. A1 - Andermann, Christoff A1 - Beer, Alexander R. A1 - Damm, Bodo A1 - Lucia, Ana A1 - Fauer, Felix S. A1 - Nissen, Katrin M. A1 - Sieg, Tobias A1 - Thieken, Annegret H. T1 - More than heavy rain turning into fast-flowing water - a landscape perspective on the 2021 Eifel floods JF - Natural hazards and earth system sciences N2 - Rapidly evolving floods are rare but powerful drivers of landscape reorganisation that have severe and long-lasting impacts on both the functions of a landscape's subsystems and the affected society. The July 2021 flood that particularly hit several river catchments of the Eifel region in western Germany and Belgium was a drastic example. While media and scientists highlighted the meteorological and hydrological aspects of this flood, it was not just the rising water levels in the main valleys that posed a hazard, caused damage, and drove environmental reorganisation. Instead, the concurrent coupling of landscape elements and the wood, sediment, and debris carried by the fast-flowing water made this flood so devastating and difficult to predict. Because more intense floods are able to interact with more landscape components, they at times reveal rare non-linear feedbacks, which may be hidden during smaller events due to their high thresholds of initiation. Here, we briefly review the boundary conditions of the 14-15 July 2021 flood and discuss the emerging features that made this event different from previous floods. We identify hillslope processes, aspects of debris mobilisation, the legacy of sustained human land use, and emerging process connections and feedbacks as critical non-hydrological dimensions of the flood. With this landscape scale perspective, we develop requirements for improved future event anticipation, mitigation, and fundamental system understanding. Y1 - 2022 U6 - https://doi.org/10.5194/nhess-22-1845-2022 SN - 1561-8633 SN - 1684-9981 VL - 22 IS - 6 SP - 1845 EP - 1856 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Illien, Luc A1 - Sens-Schönfelder, Christoph A1 - Andermann, Christoff A1 - Marc, Odin A1 - Cook, Kristen L. A1 - Adhikari, Lok Bijaya A1 - Hovius, Niels T1 - Seismic velocity recovery in the subsurface BT - transient damage and groundwater drainage following the 2015 Gorkha Earthquake, Nepal JF - Journal of geophysical research : Solid earth N2 - Shallow earthquakes frequently disturb the hydrological and mechanical state of the subsurface, with consequences for hazard and water management. Transient post-seismic hydrological behavior has been widely reported, suggesting that the recovery of material properties (relaxation) following ground shaking may impact groundwater fluctuations. However, the monitoring of seismic velocity variations associated with earthquake damage and hydrological variations are often done assuming that both effects are independent. In a field site prone to highly variable hydrological conditions, we disentangle the different forcing of the relative seismic velocity variations delta v retrieved from a small dense seismic array in Nepal in the aftermath of the 2015 M-w 7.8 Gorkha earthquake. We successfully model transient damage effects by introducing a universal relaxation function that contains a unique maximum relaxation timescale for the main shock and the aftershocks, independent of the ground shaking levels. Next, we remove the modeled velocity from the raw data and test whether the corresponding residuals agree with a background hydrological behavior we inferred from a previously calibrated groundwater model. The fitting of the delta v data with this model is improved when we introduce transient hydrological properties in the phase immediately following the main shock. This transient behavior, interpreted as an enhanced permeability in the shallow subsurface, lasts for similar to 6 months and is shorter than the damage relaxation (similar to 1 yr). Thus, we demonstrate the capability of seismic interferometry to deconvolve transient hydrological properties after earthquakes from non-linear mechanical recovery. KW - earthquake damage KW - earthquake hydrology KW - relaxation KW - Gorkha earthquake KW - seismic monitoring KW - ambient noise Y1 - 2022 U6 - https://doi.org/10.1029/2021JB023402 SN - 2169-9313 SN - 2169-9356 VL - 127 IS - 2 PB - American Geophysical Union CY - Washington ER - TY - GEN A1 - Marc, Odin A1 - Behling, Robert A1 - Andermann, Christoff A1 - Turowski, Jens M. A1 - Illien, Luc A1 - Roessner, Sigrid A1 - Hovius, Niels T1 - Long-term erosion of the Nepal Himalayas by bedrock landsliding BT - the role of monsoons, earthquakes and giant landslides T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - In active mountain belts with steep terrain, bedrock landsliding is a major erosional agent. In the Himalayas, landsliding is driven by annual hydro-meteorological forcing due to the summer monsoon and by rarer, exceptional events, such as earthquakes. Independent methods yield erosion rate estimates that appear to increase with sampling time, suggesting that rare, high-magnitude erosion events dominate the erosional budget. Nevertheless, until now, neither the contribution of monsoon and earthquakes to landslide erosion nor the proportion of erosion due to rare, giant landslides have been quantified in the Himalayas. We address these challenges by combining and analysing earthquake- and monsoon-induced landslide inventories across different timescales. With time series of 5 m satellite images over four main valleys in central Nepal, we comprehensively mapped landslides caused by the monsoon from 2010 to 2018. We found no clear correlation between monsoon properties and landsliding and a similar mean landsliding rate for all valleys, except in 2015, where the valleys affected by the earthquake featured ∼ 5–8 times more landsliding than the pre-earthquake mean rate. The longterm size–frequency distribution of monsoon-induced landsliding (MIL) was derived from these inventories and from an inventory of landslides larger than ∼ 0.1 km 2 that occurred between 1972 and 2014. Using a published landslide inventory for the Gorkha 2015 earthquake, we derive the size–frequency distribution for earthquake-induced landsliding (EQIL). These two distributions are dominated by infrequent, large and giant landslides but under-predict an estimated Holocene frequency of giant landslides (> 1 km 3 ) which we derived from a literature compilation. This discrepancy can be resolved when modelling the effect of a full distribution of earthquakes of variable magnitude and when considering that a shallower earthquake may cause larger landslides. In this case, EQIL and MIL contribute about equally to a total long-term erosion of ∼ 2 ± 0.75 mm yr −1 in agreement with most thermo-chronological data. Independently of the specific total and relative erosion rates, the heavy-tailed size–frequency distribution from MIL and EQIL and the very large maximal landslide size in the Himalayas indicate that mean landslide erosion rates increase with sampling time, as has been observed for independent erosion estimates. Further, we find that the sampling timescale required to adequately capture the frequency of the largest landslides, which is necessary for deriving long-term mean erosion rates, is often much longer than the averaging time of cosmogenic 10 Be methods. This observation presents a strong caveat when interpreting spatial or temporal variability in erosion rates from this method. Thus, in areas where a very large, rare landslide contributes heavily to long-term erosion (as the Himalayas), we recommend 10 Be sample in catchments with source areas > 10 000 km 2 to reduce the method mean bias to below ∼ 20 % of the long-term erosion. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 646 KW - rainfall thresholds KW - global database KW - sediment flux KW - mountain belt KW - rates KW - river KW - size KW - exhumation KW - precipitation KW - inventories Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-425022 SN - 1866-8372 IS - 646 ER - TY - JOUR A1 - Marc, Odin A1 - Behling, Robert A1 - Andermann, Christoff A1 - Turowski, Jens M. A1 - Illien, Luc A1 - Roessner, Sigrid A1 - Hovius, Niels T1 - Long-term erosion of the Nepal Himalayas by bedrock landsliding BT - the role of monsoons, earthquakes and giant landslides JF - Earth surface dynamics N2 - In active mountain belts with steep terrain, bedrock landsliding is a major erosional agent. In the Himalayas, landsliding is driven by annual hydro-meteorological forcing due to the summer monsoon and by rarer, exceptional events, such as earthquakes. Independent methods yield erosion rate estimates that appear to increase with sampling time, suggesting that rare, high-magnitude erosion events dominate the erosional budget. Nevertheless, until now, neither the contribution of monsoon and earthquakes to landslide erosion nor the proportion of erosion due to rare, giant landslides have been quantified in the Himalayas. We address these challenges by combining and analysing earthquake- and monsoon-induced landslide inventories across different timescales. With time series of 5 m satellite images over four main valleys in central Nepal, we comprehensively mapped landslides caused by the monsoon from 2010 to 2018. We found no clear correlation between monsoon properties and landsliding and a similar mean landsliding rate for all valleys, except in 2015, where the valleys affected by the earthquake featured similar to 5-8 times more landsliding than the pre-earthquake mean rate. The longterm size-frequency distribution of monsoon-induced landsliding (MIL) was derived from these inventories and from an inventory of landslides larger than similar to 0.1 km(2) that occurred between 1972 and 2014. Using a published landslide inventory for the Gorkha 2015 earthquake, we derive the size-frequency distribution for earthquakeinduced landsliding (EQIL). These two distributions are dominated by infrequent, large and giant landslides but under-predict an estimated Holocene frequency of giant landslides (> 1 km(3)) which we derived from a literature compilation. This discrepancy can be resolved when modelling the effect of a full distribution of earthquakes of variable magnitude and when considering that a shallower earthquake may cause larger landslides. In this case, EQIL and MIL contribute about equally to a total long-term erosion of similar to 2 +/- 0.75 mm yr(-1) in agreement with most thermo-chronological data. Independently of the specific total and relative erosion rates, the heavy-tailed size-frequency distribution from MIL and EQIL and the very large maximal landslide size in the Himalayas indicate that mean landslide erosion rates increase with sampling time, as has been observed for independent erosion estimates. Further, we find that the sampling timescale required to adequately capture the frequency of the largest landslides, which is necessary for deriving long-term mean erosion rates, is often much longer than the averaging time of cosmogenic Be-10 methods. This observation presents a strong caveat when interpreting spatial or temporal variability in erosion rates from this method. Thus, in areas where a very large, rare landslide contributes heavily to long-term erosion (as the Himalayas), we recommend Be-10 sample in catchments with source areas > 10 000 km(2) to reduce the method mean bias to below similar to 20 % of the long-term erosion. Y1 - 2019 U6 - https://doi.org/10.5194/esurf-7-107-2019 SN - 2196-6311 SN - 2196-632X VL - 7 IS - 1 SP - 107 EP - 128 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Menges, Johanna A1 - Hovius, Niels A1 - Andermann, Christoff A1 - Dietze, Michael A1 - Swoboda, Charlie A1 - Cook, Kristen L. A1 - Adhikari, Basanta R. A1 - Vieth-Hillebrand, Andrea A1 - Bonnet, Stephane A1 - Reimann, Tony A1 - Koutsodendris, Andreas A1 - Sachse, Dirk T1 - Late holocene landscape collapse of a trans-himalayan dryland BT - human impact and aridification JF - Geophysical research letters N2 - Soil degradation is a severe and growing threat to ecosystem services globally. Soil loss is often nonlinear, involving a rapid deterioration from a stable eco-geomorphic state once a tipping point is reached. Soil loss thresholds have been studied at plot scale, but for landscapes, quantitative constraints on the necessary and sufficient conditions for tipping points are rare. Here, we document a landscape-wide eco-geomorphic tipping point at the edge of the Tibetan Plateau and quantify its drivers and erosional consequences. We show that in the upper Kali Gandaki valley, Nepal, soil formation prevailed under wetter conditions during much of the Holocene. Our data suggest that after a period of human pressure and declining vegetation cover, a 20% reduction of relative humidity and precipitation below 200 mm/year halted soil formation after 1.6 ka and promoted widespread gullying and rapid soil loss, with irreversible consequences for ecosystem services. KW - geomorphology KW - paleoclimate KW - human activity KW - Tibetan plateau KW - late Holocene Y1 - 2019 U6 - https://doi.org/10.1029/2019GL084192 SN - 0094-8276 SN - 1944-8007 VL - 46 IS - 23 SP - 13814 EP - 13824 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Menges, Johanna A1 - Hovius, Niels A1 - Andermann, Christoff A1 - Lupker, Maarten A1 - Haghipour, Negar A1 - Märki, Lena A1 - Sachse, Dirk T1 - Variations in organic carbon sourcing along a trans-Himalayan river determined by a Bayesian mixing approach JF - Geochimica et cosmochimica acta : journal of the Geochemical Society and the Meteoritical Society N2 - Rivers transfer particulate organic carbon (POC) from eroding mountains into geological sinks. Organic carbon source composition and selective mobilization have been shown to affect the type and quantity of POC export, but their combined effects across complex mountain ranges remain underexplored. Here, we examine the variation in organic carbon sourcing and transport in the trans-Himalayan Kali Gandaki River catchment, along strong gradients in precipitation, rock type and vegetation. Combining bulk stable nitrogen, and stable and radioactive organic carbon isotopic composition of bedrock, litter, soil and river sediment samples with a Bayesian end-member mixing approach, we differentiate POC sources along the river and quantify their export. Our analysis shows that POC export from the Tibetan segment of the catchment, where carbon bearing shales are partially covered by aged and modern soils, is dominated by petrogenic POC. Based on our data we re-assess the presence of aged biospheric OC in this part of the catchment, and its contribution to the river load. In the High Himalayan segment, we observed low inputs of petrogenic and biospheric POC, likely due to very low organic carbon concentrations in the metamorphic bedrock, combined with erosion dominated by deep-seated landslides. Our findings show that along the Kali Gandaki River, the sourcing of sediment and organic carbon are decoupled, due to differences in rock organic carbon content, soil and above ground carbon stocks, and geomorphic process activity. While the fast eroding High Himalayas are the principal source of river sediment, the Tibetan headwaters, where erosion rates are lower, are the principal source of organic carbon. To robustly estimate organic carbon export from the Himalayas, the mountain range should be divided into tectono-physiographic zones with distinct organic carbon yields due to differences in substrate and erosion processes and rates. KW - particulate organic carbon KW - Himalaya KW - rivers KW - carbon cycle KW - stable KW - isotopes KW - erosion KW - end-member mixing Y1 - 2020 U6 - https://doi.org/10.1016/j.gca.2020.07.003 SN - 0016-7037 VL - 286 SP - 159 EP - 176 PB - Elsevier CY - New York [u.a.] ER -