TY - JOUR A1 - Eerqing, Narima A1 - Subramanian, Sivaraman A1 - Rubio Jimenez, Jesus A1 - Lutz, Tobias A1 - Wu, Hsin-Yu A1 - Anders, Janet A1 - Soeller, Christian A1 - Vollmer, Frank T1 - Comparing transient oligonucleotide hybridization kinetics using DNA-PAINT and optoplasmonic single-molecule sensing on gold nanorods JF - ACS photonics / American Chemical Society N2 - We report a comparison of two photonic techniques for single-molecule sensing: fluorescence nanoscopy and optoplasmonic sensing. As the test system, oligonucleotides with and without fluorescent labels are transiently hybridized to complementary "docking" strands attached to gold nanorods. Comparing the measured single-molecule kinetics helps to examine the influence of the fluorescent labels as well as factors arising from different sensing geometries. Our results demonstrate that DNA dissociation is not significantly altered by the fluorescent labels and that DNA association is affected by geometric factors in the two techniques. These findings open the door to exploiting plasmonic sensing and fluorescence nanoscopy in a complementary fashion, which will aid in building more powerful sensors and uncovering the intricate effects that influence the behavior of single molecules. KW - single-molecule KW - plasmonics KW - whispering gallery modes KW - optoplasmonic KW - DNA-PAINT KW - fluorescence KW - localization microscopy Y1 - 2021 U6 - https://doi.org/10.1021/acsphotonics.1c01179 SN - 2330-4022 VL - 8 IS - 10 SP - 2882 EP - 2888 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Kogikoski Junior, Sergio A1 - Dutta, Anushree A1 - Bald, Ilko T1 - Spatial separation of plasmonic hot-electron generation and a hydrodehalogenation reaction center using a DNA wire JF - ACS nano N2 - Using hot charge carriers far from a plasmonic nanoparticle surface is very attractive for many applications in catalysis and nanomedicine and will lead to a better understanding of plasmon-induced processes, such as hot-charge-carrier- or heat-driven chemical reactions. Herein we show that DNA is able to transfer hot electrons generated by a silver nanoparticle over several nanometers to drive a chemical reaction in a molecule nonadsorbed on the surface. For this we use 8-bromo-adenosine introduced in different positions within a double-stranded DNA oligonucleotide. The DNA is also used to assemble the nanoparticles into nanoparticles ensembles enabling the use of surface-enhanced Raman scattering to track the decomposition reaction. To prove the DNA-mediated transfer, the probe molecule was insulated from the source of charge carriers, which hindered the reaction. The results indicate that DNA can be used to study the transfer of hot electrons and the mechanisms of advanced plasmonic catalysts. KW - plasmonics KW - DNA nanotechnology KW - hot electrons KW - charge transfer KW - SERS KW - superlattices Y1 - 2021 U6 - https://doi.org/10.1021/acsnano.1c09176 SN - 1936-0851 SN - 1936-086X VL - 15 IS - 12 SP - 20562 EP - 20573 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Heck, Christian A1 - Prinz, Julia A1 - Dathe, Andre A1 - Merk, Virginia A1 - Stranik, Ondrej A1 - Fritzsche, Wolfgang A1 - Kneipp, Janina A1 - Bald, Ilko T1 - Gold Nanolenses Self-Assembled by DNA Origami JF - ACS Photonics N2 - Nanolenses are self-similar chains of metal nanoparticles, which can theoretically provide extremely high field enhancements. Yet, the complex structure renders their synthesis challenging and has hampered closer analyses so far. Here, DNA origami is used to self-assemble 10, 20, and 60 nm gold nanoparticles as plasmonic gold nanolenses (AuNLs) in solution and in billions of copies. Three different geometrical arrangements are assembled, and for each of the three designs, surface-enhanced Raman scattering (SERS) capabilities of single AuNLs are assessed. For the design which shows the best properties, SERS signals from the two different internal gaps are compared by selectively placing probe dyes. The highest Raman enhancement is found for the gap between the small and medium nanoparticle, which is indicative of a cascaded field enhancement. KW - plasmonics KW - DNA origami KW - SERS KW - nanolenses KW - gold nanoparticles Y1 - 2017 U6 - https://doi.org/10.1021/acsphotonics.6b00946 SN - 2330-4022 VL - 4 SP - 1123 EP - 1130 PB - American Chemical Society CY - Washington ER -