TY - JOUR A1 - Mattern, Maximilian A1 - von Reppert, Alexander A1 - Zeuschner, Steffen Peer A1 - Herzog, Marc A1 - Pudell, Jan-Etienne A1 - Bargheer, Matias T1 - Concepts and use cases for picosecond ultrasonics with x-rays JF - Photoacoustics N2 - This review discusses picosecond ultrasonics experiments using ultrashort hard x-ray probe pulses to extract the transient strain response of laser-excited nanoscopic structures from Bragg-peak shifts. This method provides direct, layer-specific, and quantitative information on the picosecond strain response for structures down to few-nm thickness. We model the transient strain using the elastic wave equation and express the driving stress using Gruneisen parameters stating that the laser-induced stress is proportional to energy density changes in the microscopic subsystems of the solid, i.e., electrons, phonons and spins. The laser-driven strain response can thus serve as an ultrafast proxy for local energy-density and temperature changes, but we emphasize the importance of the nanoscale morphology for an accurate interpretation due to the Poisson effect. The presented experimental use cases encompass ultrathin and opaque metal-heterostructures, continuous and granular nanolayers as well as negative thermal expansion materials, that each pose a challenge to established all-optical techniques. KW - Picosecond ultrasonics KW - Ultrafast x-ray diffraction KW - Ultrafast x-ray KW - scattering KW - Ultrafast photoacoustics KW - Nanoscale heat transfer KW - Negative KW - thermal expansion Y1 - 2023 U6 - https://doi.org/10.1016/j.pacs.2023.100503 SN - 2213-5979 VL - 31 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Sharma, Shubham A1 - Hainzl, Sebastian A1 - Zöller, Gert T1 - Seismicity parameters dependence on main shock-induced co-seismic stress JF - Geophysical journal international N2 - The Gutenberg-Richter (GR) and the Omori-Utsu (OU) law describe the earthquakes' energy release and temporal clustering and are thus of great importance for seismic hazard assessment. Motivated by experimental results, which indicate stress-dependent parameters, we consider a combined global data set of 127 main shock-aftershock sequences and perform a systematic study of the relationship between main shock-induced stress changes and associated seismicity patterns. For this purpose, we calculate space-dependent Coulomb Stress (& UDelta;CFS) and alternative receiver-independent stress metrics in the surrounding of the main shocks. Our results indicate a clear positive correlation between the GR b-value and the induced stress, contrasting expectations from laboratory experiments and suggesting a crucial role of structural heterogeneity and strength variations. Furthermore, we demonstrate that the aftershock productivity increases nonlinearly with stress, while the OU parameters c and p systematically decrease for increasing stress changes. Our partly unexpected findings can have an important impact on future estimations of the aftershock hazard. KW - Earthquake hazards KW - Earthquake interaction KW - forecasting KW - and prediction KW - Statistical seismology KW - b-value Y1 - 2023 U6 - https://doi.org/10.1093/gji/ggad201 SN - 0956-540X SN - 1365-246X VL - 235 IS - 1 SP - 509 EP - 517 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Teich, Paula A1 - Fühner, Thea Heidi A1 - Granacher, Urs A1 - Kliegl, Reinhold T1 - Physical fitness of primary school children differs depending on their timing of school enrollment JF - Scientific reports N2 - Previous research has shown that children who were enrolled to school according to the legal key date (i.e., keyage children, between eight and nine years in third grade) exhibited a linear physical fitness development in the ninth year of life. In contrast, children who were enrolled with a delay (i.e., older-than-keyage children [OTK], between nine and ten years in third grade) exhibited a lower physical fitness compared to what would be expected for their age. In these studies, cross-sectional age differences within third grade and timing of school enrollment were confounded. The present study investigated the longitudinal development of keyage and OTK children from third to fifth grade. This design also afforded a comparison of the two groups at the same average chronological age, that is a dissociation of the effects of timing of school enrollment and age. We tested six physical fitness components: cardiorespiratory endurance, coordination, speed, power of lower and upper limbs, and static balance. 1502 children (i.e., 1206 keyage and 296 OTK children) from 35 schools were tested in third, fourth, and fifth grade. Except for cardiorespiratory endurance, both groups developed from third to fourth and from fourth to fifth grade and keyage children outperformed OTK children at the average ages of 9.5 or 10.5 years. For cardiorespiratory endurance, there was no significant gain from fourth to fifth grade and keyage and OTK children did not differ significantly at 10.5 years of age. One reason for a delayed school enrollment could be that a child is (or is perceived as) biologically younger than their chronological age at the school entry examination, implying a negative correlation between chronological and biological age for OTK children. Indeed, a simple reflection of chronological age brought the developmental rate of the chronologically youngest OTK children in line with the developmental rate observed for keyage children, but did not eliminate all differences. The mapping of chronological and biological age of OTK children and other possible reasons for lower physical fitness of OTK children remain a task for future research. KW - Health care KW - Paediatrics KW - Physiology Y1 - 2023 U6 - https://doi.org/10.1038/s41598-023-35727-y SN - 2045-2322 VL - 13 IS - 1 PB - Springer Nature CY - London ER - TY - JOUR A1 - Geist, Emily A1 - Gallagher, John S. A1 - Kotulla, Ralf A1 - Oskinova, Lida A1 - Hamann, Wolf-Rainer A1 - Ramachandran, Varsha A1 - Sabbi, Elena A1 - Smith, Linda J. A1 - Kniazev, Alexey A1 - Nota, Antonella A1 - Rickard, Matthew J. T1 - Ionization and star formation in the giant H ii region SMC-N66 JF - Publications of the Astronomical Society of the Pacific N2 - The NGC 346 young stellar system and associated N66 giant H ii region in the Small Magellanic Cloud are the nearest example of a massive star-forming event in a low metallicity (Z approximate to 0.2Z (circle dot)) galaxy. With an age of less than or similar to 3 Myr this system provides a unique opportunity to study relationships between massive stars and their associated H ii region. Using archival data, we derive a total H alpha luminosity of L(H alpha) = 4.1 x 10(38) erg s(-1) corresponding to an H-photoionization rate of 3 x 10(50) s(-1). A comparison with a predicted stellar ionization rate derived from the more than 50 known O-stars in NGC 346, including massive stars recently classified from Hubble Space Telescope far-ultraviolet (FUV) spectra, indicates an approximate ionization balance. Spectra obtained with SALT suggest the ionization structure of N66 could be consistent with some leakage of ionizing photons. Due to the low metallicity, the FUV luminosity from NGC 346 is not confined to the interstellar cloud associated with N66. Ionization extends through much of the spatial extent of the N66 cloud complex, and most of the cloud mass is not ionized. The stellar mass estimated from nebular L(H alpha) appears to be lower than masses derived from the census of resolved stars which may indicate a disconnect between the formation of high and low mass stars in this region. We briefly discuss implications of the properties of N66 for studies of star formation and stellar feedback in low metallicity environments. Y1 - 2022 U6 - https://doi.org/10.1088/1538-3873/ac697b SN - 0004-6280 SN - 1538-3873 VL - 134 IS - 1036 PB - IOP Publishing CY - Bristol ER - TY - JOUR A1 - Perottoni, Hélio D. A1 - Limberg, Guilherme A1 - Amarante, João A. S. A1 - Rossi, Silvia A1 - Queiroz, Anna B. A. A1 - Santucci, Rafael M. A1 - Pérez-Villegas, Angeles A1 - Chiappini, Cristina T1 - The unmixed debris of Gaia-Sausage/Enceladus in the form of a pair of halo stellar overdensities JF - Astrophysical journal letters N2 - In the first billion years after its formation, the galaxy underwent several mergers with dwarf satellites of various masses. The debris of Gaia-Sausage/Enceladus (GSE), the galaxy responsible for the last significant merger of the Milky Way, dominates the inner halo and has been suggested to be the progenitor of both the Hercules-Aquila Cloud (HAC) and Virgo Overdensity (VOD). We combine SEGUE, APOGEE, Gaia, and StarHorse distances to characterize the chemodynamical properties and verify the link between HAC, VOD, and GSE. We find that the orbital eccentricity distributions of the stellar overdensities and GSE are comparable. We also find that they have similar, strongly peaked, metallicity distribution functions, reinforcing the hypothesis of common origin. Furthermore, we show that HAC and VOD are indistinguishable from the prototypical GSE population within all chemical-abundance spaces analyzed. All these evidences combined provide a clear demonstration that the GSE merger is the main progenitor of the stellar populations found within these halo overdensities. Y1 - 2022 U6 - https://doi.org/10.3847/2041-8213/ac88d6 SN - 2041-8205 SN - 2041-8213 VL - 936 IS - 1 PB - IOP Publishing CY - Bristol ER - TY - JOUR A1 - Xu, Huizhen A1 - Giannetti, Alessandro A1 - Sugiyama, Yuki A1 - Zheng, Wenna A1 - Schneider, René A1 - Watanabe, Yoichiro A1 - Oda, Yoshihisa A1 - Persson, Staffan T1 - Secondary cell wall patterning-connecting the dots, pits and helices JF - Open biology N2 - All plant cells are encased in primary cell walls that determine plant morphology, but also protect the cells against the environment. Certain cells also produce a secondary wall that supports mechanically demanding processes, such as maintaining plant body stature and water transport inside plants. Both these walls are primarily composed of polysaccharides that are arranged in certain patterns to support cell functions. A key requisite for patterned cell walls is the arrangement of cortical microtubules that may direct the delivery of wall polymers and/or cell wall producing enzymes to certain plasma membrane locations. Microtubules also steer the synthesis of cellulose-the load-bearing structure in cell walls-at the plasma membrane. The organization and behaviour of the microtubule array are thus of fundamental importance to cell wall patterns. These aspects are controlled by the coordinated effort of small GTPases that probably coordinate a Turing's reaction-diffusion mechanism to drive microtubule patterns. Here, we give an overview on how wall patterns form in the water-transporting xylem vessels of plants. We discuss systems that have been used to dissect mechanisms that underpin the xylem wall patterns, emphasizing the VND6 and VND7 inducible systems, and outline challenges that lay ahead in this field. KW - plant cell wall KW - microtubules KW - xylem KW - cell wall patterning KW - cellulose Y1 - 2022 U6 - https://doi.org/10.1098/rsob.210208 SN - 2046-2441 VL - 12 IS - 5 PB - Royal Society CY - London ER - TY - JOUR A1 - Hagoort, Iris A1 - Vuillerme, Nicolas A1 - Hortobágyi, Tibor A1 - Lamoth, Claudine J. C. T1 - Outcome-dependent effects of walking speed and age on quantitative and qualitative gait measures JF - Gait & posture N2 - Background: Walking speed predicts many clinical outcomes in old age. However, a comprehensive assessment of how walking speed affects accelerometer based quantitative and qualitative gait measures in younger and older adults is lacking. Research question: What is the relationship between walking speed and quantitative and qualitative gait outcomes in younger and older adults? Methods: Younger (n = 27, age: 21.6) and older participants (n = 27, age: 69.5) completed 340 steps on a treadmill at speeds of 0.70 to a maximum of 1.75 m.s(-1). We used generalized additive mixed models to determine the relationship between walking speed and quantitative (stride length, stride time, stride frequency and their variability) and qualitative (stride regularity, stability, smoothness, symmetry, synchronization, predictability) gait measures extracted from trunk accelerations. Results: The type of relationship between walking speed and the majority of gait measures (quantitative and qualitative) was characterized as logarithmic, with more prominent speed-effects at speeds below 1.20 m.s(-1). Changes in quantitative measures included shorter strides, longer stride times, and a lower stride frequency, with more variability at lower speeds independent of age. For qualitative measures, we found a decrease in gait symmetry, stability and regularity in all directions with decreasing speeds, a decrease in gait predictability (Vertical, V, anterior-posterior, AP) and stronger gait synchronization (AP-mediolateral, ML, AP-V), and direction dependent effects of gait smoothness, which decreased in V direction, but increased in AP and ML directions with decreasing speeds. We found outcome-dependent effects of age on the quantitative and qualitative gait measures, with either no differences between age-groups, age-related differences that existed regardless of speed, and age-related differences in the type of relationship with walking speed. Significance: The relationship between walking speed and quantitative and qualitative gait measures, and the effects of age on this relationship, depends on the type of gait measure studied. KW - Gait quality and quantity KW - Aging KW - Walking speed KW - Treadmill KW - Generalized KW - additive mixed models Y1 - 2022 U6 - https://doi.org/10.1016/j.gaitpost.2022.01.001 SN - 0966-6362 SN - 1879-2219 VL - 93 SP - 39 EP - 46 PB - Elsevier CY - Clare ER - TY - JOUR A1 - Adesina, Morenike O. A1 - Block, Inga A1 - Günter, Christina A1 - Unuabonah, Emmanuel Iyayi A1 - Taubert, Andreas T1 - Efficient Removal of Tetracycline and Bisphenol A from Water with a New Hybrid Clay/TiO2 Composite JF - ACS Omega N2 - New TiO2 hybrid composites were prepared fromkaolinclay, predried and carbonized biomass, and titanium tetraisopropoxideand explored for tetracycline (TET) and bisphenol A (BPA) removalfrom water. Overall, the removal rate is 84% for TET and 51% for BPA.The maximum adsorption capacities (q (m))are 30 and 23 mg/g for TET and BPA, respectively. These capacitiesare far greater than those obtained for unmodified TiO2. Increasing the ionic strength of the solution does not change theadsorption capacity of the adsorbent. pH changes only slightly changeBPA adsorption, while a pH > 7 significantly reduces the adsorptionof TET on the material. The Brouers-Sotolongo fractal modelbest describes the kinetic data for both TET and BPA adsorption, predictingthat the adsorption process occurs via a complex mechanism involvingvarious forces of attraction. Temkin and Freundlich isotherms, whichbest fit the equilibrium adsorption data for TET and BPA, respectively,suggest that adsorption sites are heterogeneous in nature. Overall,the composite materials are much more effective for TET removal fromaqueous solution than for BPA. This phenomenon is assigned to a differencein the TET/adsorbent interactions vs the BPA/adsorbent interactions:the decisive factor appears to be favorable electrostatic interactionsfor TET yielding a more effective TET removal. Y1 - 2023 U6 - https://doi.org/10.1021/acsomega.3c00184 SN - 2470-1343 VL - 8 IS - 24 SP - 21594 EP - 21604 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Cohen, Sarel A1 - Hershcovitch, Moshik A1 - Taraz, Martin A1 - Kissig, Otto A1 - Issac, Davis A1 - Wood, Andrew A1 - Waddington, Daniel A1 - Chin, Peter A1 - Friedrich, Tobias T1 - Improved and optimized drug repurposing for the SARS-CoV-2 pandemic JF - PLoS one N2 - The active global SARS-CoV-2 pandemic caused more than 426 million cases and 5.8 million deaths worldwide. The development of completely new drugs for such a novel disease is a challenging, time intensive process. Despite researchers around the world working on this task, no effective treatments have been developed yet. This emphasizes the importance of drug repurposing, where treatments are found among existing drugs that are meant for different diseases. A common approach to this is based on knowledge graphs, that condense relationships between entities like drugs, diseases and genes. Graph neural networks (GNNs) can then be used for the task at hand by predicting links in such knowledge graphs. Expanding on state-of-the-art GNN research, Doshi et al. recently developed the Dr-COVID model. We further extend their work using additional output interpretation strategies. The best aggregation strategy derives a top-100 ranking of 8,070 candidate drugs, 32 of which are currently being tested in COVID-19-related clinical trials. Moreover, we present an alternative application for the model, the generation of additional candidates based on a given pre-selection of drug candidates using collaborative filtering. In addition, we improved the implementation of the Dr-COVID model by significantly shortening the inference and pre-processing time by exploiting data-parallelism. As drug repurposing is a task that requires high computation and memory resources, we further accelerate the post-processing phase using a new emerging hardware-we propose a new approach to leverage the use of high-capacity Non-Volatile Memory for aggregate drug ranking. Y1 - 2023 U6 - https://doi.org/10.1371/journal.pone.0266572 SN - 1932-6203 VL - 18 IS - 3 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Pranav, Manasi A1 - Hultzsch, Thomas A1 - Musiienko, Artem A1 - Sun, Bowen A1 - Shukla, Atul A1 - Jaiser, Frank A1 - Shoaee, Safa A1 - Neher, Dieter T1 - Anticorrelated photoluminescence and free charge generation proves field-assisted exciton dissociation in low-offset PM6:Y5 organic solar cells JF - APL materials : high impact open access journal in functional materials science N2 - Understanding the origin of inefficient photocurrent generation in organic solar cells with low energy offset remains key to realizing high-performance donor-acceptor systems. Here, we probe the origin of field-dependent free-charge generation and photoluminescence in wnon-fullereneacceptor (NFA)-based organic solar cells using the polymer PM6 and the NFA Y5-a non-halogenated sibling to Y6, with a smaller energetic offset to PM6. By performing time-delayed collection field (TDCF) measurements on a variety of samples with different electron transport layers and active layer thickness, we show that the fill factor and photocurrent are limited by field-dependent free charge generation in the bulk of the blend. We also introduce a new method of TDCF called m-TDCF to prove the absence of artifacts from non-geminate recombination of photogenerated and dark charge carriers near the electrodes. We then correlate free charge generation with steady-state photoluminescence intensity and find perfect anticorrelation between these two properties. Through this, we conclude that photocurrent generation in this low-offset system is entirely controlled by the field-dependent dissociation of local excitons into charge-transfer states. (c) 2023 Author(s). Y1 - 2023 U6 - https://doi.org/10.1063/5.0151580 SN - 2166-532X VL - 11 IS - 6 PB - AIP Publishing CY - Melville ER -